Metafeature Training for Anti-Adversarial Content Filtering

Chad Mills

Microsoft

One Microsoft Way

Redmond, WA USA

cmills@microsoft.com

Abstract

Many spammers are successful at avoiding detection by content filters. Spam filters look at which message attributes tend to have appeared in spam and non-spam messages in the past and use that to predict whether or not an incoming message is spam. Naïve Bayes and other probabilistic machine learning algorithms have received a lot of attention for detecting spam in this manner. One weakness in this approach is that spammers can use test messages to identify content the filter associates with non-spam messages and add this good content to their spam message until it avoids detection.

In our experience, normal messages frequently have many words that are mild indicators of a spam or non-spam message, but these spam messages crafted to avoid detection tend to have some very spammy attributes offset by many very good attributes. Metafeatures provides a way to detect this by analyzing not just whether a message’s attributes tend to have appeared in good or spam messages in the past, but whether the distribution of weights associated with a message’s attributes tends to represent a good or spam message.

1 Introduction

Spam is still a big problem [8, 10].
Some spammers understand the nature of content filters that attempt to filter their messages and actively try to work around the filter, while others send spam without consideration for the spam-filtering technologies used by the recipient. Content filters are relatively effective against the spammers not specifically crafting their messages to avoid detection. On the other hand, many spammers with a deep understanding of spam filters are able to consistently get their messages past the filters.

Metafeatures attempts to identify spam messages crafted to avoid detection by content filters.
2 Prior Work

2.1 Text Classification and Spam Applications

Text classifiers attempt to determine whether or not a document falls within a predefined class. By looking at a sample of pre-classified documents and breaking them down into document attributes (e.g. words), a machine learning classifier learns which attributes tend to appear in that class of documents and which do not. These tendencies are then used to predict whether a future example falls within the class.

This technique has been applied to spam filtering [5, 9]. A set of emails are classified as spam or non-spam, and those messages are broken down into features (email attributes). This set of accurately classified messages serves as the training set. When new messages are received, they can be run through a spam filter which predicts—based on the training output—whether or not the message is spam. A spam classification can lead to a variety of consequences, ranging from rejecting the mail to placing it in a junk folder or appending a spam tag to the subject.

2.2 Related Work

Dalvi identified the adversarial nature of the spam problem and provided recommendations on how to make classifiers more robust to adversarial attacks [4]. While this has a purpose similar to metafeatures, Dalvi’s approach was to make a single classifier more robust while metafeatures adds a second classifier to detect the adversary’s manipulation of the first classifier.
Bennett started with multiple distinct text classifiers, and combined them using an additional training run which included the output of the classifiers along with reliability indicators [1, 2, 3]. These reliability indicators were features such as document length, the percentage of words in a document that weren’t in the training set, voting features for the base classifiers, and statistical measures of the sensitivities of the base filters [2]. The purpose of these reliability indicators was to provide document context which would indicate which filters were best at classifying a particular type of document. This could outperform a voting strategy by trusting each of the classifiers on the particular type of documents they’re effective at classifying.

This research was on the text classification problem rather than spam filtering, and the purpose was to determine which of several base classifiers was more trustworthy on a given document. However, the use of a meta-classifier with context information about the base classifier has parallels with metafeatures.

3 Adversarial Challenges

3.1 Adversaries Make Spam Classification Hard
While spam classification is similar to the classic text classification problem in many respects, spam classification is particularly difficult because there is an adversary attempting to create a document which belongs to the spam class but which the classifier will fail to classify correctly. When using a text classifier to classify news stories into topics, by contrast, one would not need to be very concerned about reporters crafting their science articles in an attempt to avoid getting the article classified in the science category. Spammers, on the other hand, have financial motivation for getting their messages get classified incorrectly.

3.2 Traditional Spam Filters

Traditional spam filters based on probabilistic machine learning models start with a training set of messages classified as good or spam. These messages are broken down into component attributes, or features. Machine learning algorithms like Naïve Bayes assign numerical weights to these features which indicate, in the context of the weights given to other features, how likely a message containing that feature is to be spam or non-spam. Predictive attributes are given weights with a large magnitude, and opposite signs are used to indicate whether the attribute is predictive of a spam or non-spam message. Features which are not very predictive are assigned weights with a small magnitude.

3.3 The Adversaries

The application of these training algorithms to the spam problem makes the assumption that words previously appearing in good mails will continue to appear in good mails, and words previously appearing in spam will continue to appear in spam. This is what spammers exploit by identifying "good words” and add them as “chaff” into spam messages to avoid detection [7].
The technique described herein is targeted specifically toward linear classifiers, but could be applied more broadly as well. With a quadratic classifier, for example, the spammer could add large groups of words instead of individual words, or find individual good words and then through a series of tests eliminate pairs of these good words that cause a borderline good message to get caught. The specific technique used to find good content is not as important as the result, where spammers add known good content to a spam message in order to avoid detection.
To find good words, spammers could start with a good message that does not get caught by the spam filter. It may be challenging to get messages with spammy content delivered, but spammers can consult their own inboxes to find legitimate messages which do not get filtered. The spammer can then slowly add known spammy content (e.g. the word “viagra”) to the message until it is caught. With widely available products like Spam Assassin or free mail providers like Hotmail and Yahoo, spammers can easily determine whether or not a test message is getting caught by the filter. With a borderline message just barely getting caught, spammers can then add potential good words to the message and determine whether or not the message with the added words gets through. In the event the message with added content gets past the filter, the added word(s) can be regarded as good by the spam filter [7].

Spammers find these words the spam filter regards as good, and proceed to add them to a spam message until the amount of good content overpowers the spam content and the message gets past the filter [6].

3.4 Opportunity to Detect Spammers

By attempting to deceive the spam filter, spammers artificially alter the content of their message by adding enough good words that any spam content is overpowered and the message avoids detection. The message feature scores, when combined together, end up indicating the message is good. However, the artificial distribution of scores provides an opportunity to detect the difference between a well-crafted spam message and a regular non-spam message.

4 Metafeatures
4.1 Target: Adversaries
As discussed in 3.3, many spammers craft messages specifically to avoid detection by a content filter. Metafeatures specifically targets these messages. Spam sent not meeting these criteria, including naïve spam (spam not crafted to work around the filter) and gray mail (messages some recipients consider good and others consider spam), are not intended to be filtered better by metafeatures. The content filter itself should be effective on much of the spam not attempting to work around the filter, and reputation should be helpful on gray mail. Since metafeatures depends on a content filter and isn’t expected to help significantly with gray mail, it should not be used alone but rather in conjunction with other technologies in order to effectively stop spam.
4.2 Conceptual Overview

In a traditional machine-learning-based spam filter (Figure 1), a set of training messages are first classified as spam or non-spam. Each message is broken down into component features, and training assigns numerical weights to a set of those features. When a new message is to be evaluated, the message is broken down into its component features and the corresponding weights are determined from the training output. These weights are then combined (e.g. by adding them together) to form a score for the message. Based on this score, an action such as moving the message to the junk folder may be taken for messages meeting a predefined threshold.

[image: image1.png]features

weights
score

(feature,weight)
pairs

training
features -

Figure 1: Traditional spam content filter

Metafeatures builds on this system and attempts to detect messages crafted to work around the filter by identifying messages with distributions of weights which do not match those of legitimate messages.

When using metafeatures (Figure 2), several steps are added to this process. After training results in weights being assigned to a set of features, metafeatures are computed for each training message. Metafeatures may include a sum of weights, standard deviation of weights, number of features, etc. These features characterize the spam filter’s perspective on the message. The sum of weights is analogous to the output of a traditional spam filter, and other statistical metafeatures describe the distribution of weights assigned to the message’s features. After the metafeatures are computed, another training run assigns these metafeatures weights. Since this is another training run, it is possible to add metafeatures that are not statistical descriptions of the first training run’s output, including the original features, reputation data, etc. However, since the primary purpose of metafeatures is to detect spammers working around the filter, these alternate configurations and their relative performances are not discussed to simplify this discussion.
When a message is received which needs to be evaluated, it is broken down into features and their weights are determined from the output of the first training run, as before. Then, the metafeatures are calculated for the message. The metafeature weights are determined from the output of the second training run, and are then combined to arrive at a final score for the message.
[image: image2.png]features
score

Run Time

metafeature
extraction

pairs

ure,weight)

extraction
training

metafeature

- (feat

features

Figure 2: Content filter with metafeatures
5 Experiment
This section describes the experimental results of applying metafeatures to a large set of classified messages. First the data and details on the experimental setup are introduced, followed by experimental results including a comparative ROC curve.
5.1 Experimental Setup
This section provides details on the system used to evaluate metafeatures. This includes the data used for training and evaluation and the specific metafeatures used.
5.1.1 Dataset
The Hotmail Feedback Loop is a set of messages collected by asking over 100,000 Hotmail volunteers daily to classify a message addressed to them as good or spam. For more details on this system, see [11]. The training set consisted of 1,800,000 messages received in March 2007 through May 20, 2007. The evaluation set consisted of 50,000 messages classified on May 21, 2007, after the last of the training messages had been received.
5.1.2 Feature Placement

The main purpose of metafeatures is to detect spammers altering their message to avoid detection. This suggests that the most important metafeatures are those related to the statistical distribution of feature weights from the first training run. Only content features were used in the first training run to allow the statistical metafeatures, such as standard deviation, a clean set of content feature weights for these statistical calculations.
Since metafeatures includes two training runs, many other configurations are possible. Some features may be placed at the base feature level and others at the metafeature level. Some features may be trained on at both the base and metafeature levels, or placed exclusively on the metafeature level even if they do not involve calculations on the output of the first training run.
5.1.3 Example Metafeatures
After the first content filter training run, the following metafeatures are calculated. These may include, for example:
· Maximum feature weight

· Minimum feature weight

· Average feature weight

· Sum of feature weights

· Standard deviation of feature weights

· Number of features

· Percent of features with spammy weights

· Number of very spammy weights

· Number of very good weights
· Percent of out of vocabulary features

· Percent of words appearing in a dictionary

· Pairs of other metafeatures
5.2 Results

5.2.1 Quantitative

Training was performed on the training set and the output was applied to the evaluation set. This was contrasted against the regular content filter alone without metafeatures, using the same training and evaluation sets. An ROC curve comparing the performance of the two filters is shown in Figure 3.
[image: image3.png]True Positives

ROC Comparison

Regular

Figure 3: Metafeatures, Regular Comparative ROC
The filter with metafeatures clearly outperformed the regular content filter. At a similar false positive threshold as the one used on the regular content filter at Hotmail, metafeatures resulted in 38.2% less spam getting through to the users’ inboxes. It should be noted that this does not mean metafeatures could catch only 38% of all spam, but rather that this was the improvement on what was not already being caught by the base content filtering system.
5.2.2 Qualitative

Qualitatively, examining the unique catches of the metafeature system reveals that the primary source of improvement was on messages with significant amounts of good word chaff. There were no significant improvements on the filtering of gray mail or spam that did not appear crafted in an attempt to work around the filter. This confirms that metafeatures worked as expected and performed well against adversarial attacks.

5.2.3 The Spammers’ Response

If this were deployed in a live setting, rather than being run against a corpus of classified mail, spammers would attempt to work around metafeatures as well. However, this would be much more difficult than working around a traditional content filter since the spammer cannot just search for good words to add and overpower any spammy content the filter detects. The manipulation is what allows the message to be detected as spam. Spam messages by definition have spammy content, so metafeatures makes it difficult for spammers to overcome this by simply adding a lot of good words to offset the spam being detected.

Additionally, with traditional content filters spammers know that some message parts have been detected as spammy and adding enough good words will get the message delivered. When a message is being caught due to the standard deviation of weights or the upper quartile, it is much more difficult for the spammer to understand what is causing the message to be caught. Furthermore, it is more difficult for spammers to manipulate metafeatures than it is to manipulate the features themselves. A spammer can easily add features by adding new words to the message, but the number of metafeatures is fixed and they are calculated on the message as a whole, so manipulating the features is easier than manipulating the metafeatures
6 Conclusions
Spam content filters are generally effective, but spammers are still able to craft messages specifically to work around them. In particular, they can add words the filter regards as good to a spam message until it avoids detection. While normal messages have many words which are not very predictive of good or spam messages, these specially crafted messages tend to have some very spammy words offset by many very good words. Metafeatures provides a way to detect spammers working around the filter in this manner by observing the abnormal distribution of feature weights.
7 Acknowledgements

Thanks to Geoff Hulten and Harry Katz for their comments on a draft of this paper.
8 References

[1] P. Bennett. Building reliable metaclassifiers for text learning. May 2006. CMU-CS-06-121, Ph.D. Thesis, Carnegie-Mellon University.
[2] P. Bennett, S. Dumais, and E. Horvitz. The combination of text classifiers using reliability indicators. Information Retrieval, 8-(1):67-100, 2005.
[3] P. Bennett, S. Dumais, and E. Horvitz. Probabilistic combination of text classifiers using reliability indicators: models and results. Proceedings of SIGIR ’02, 2002.
[4] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adversarial classification. Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2004, Seattle, WA.

[5] P. Graham. A plan for spam. http://www.paulgraham.com/spam.html, 2002.

[6] J. Graham-Cumming. How to beat an adaptive spam filter. MIT Spam Conference, January 2004, Cambridge, MA.

[7] D. Lowd and C. Meek. Good word attacks on statistical spam filters. Second Conference on Email and Anti-Spam, July 2005, Palo Alto, CA.

[8] C. Perrin. The truth about e-mail spam. ZDNet, February 2008.

[9] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A Bayesian approach to filtering junk email. AAAI Workshop on Learning for Text Categorization, July 1998, Madison, Wisconsin.

[10] SDA Asia Magazine. Spam is 90 percent of all email. February 2007.

[11] W. Yih, J. Goodman, and G. Hulten. Learning at low false positive rates. Third Conference on Email and Anti-Spam, July 2006, Mountain View, CA.

