BOTNET-GENERATED SPAM

By Areej Al-Bataineh
University of Texas at San Antonio

MIT Spam Conference 2009

www.securitycartoon.com

DO YOU HAVE MALWARE? ADWARE? CRIMEWARE?
IS YOUR COMPUTER A "BOT"?

"Often, infected machines are controlled by the attacker."

"The crooks who control these machines (or bots) are called bot herders."

"The bot herders control thousands of machines, and make them do whatever makes a buck for the crooks."

"The machines turn into electronic puppets."
Botnets: “A Global Pandemic”

Botnet is a network of compromised machines (Bots) under the command and control (C&C) of one person (master).

Machines become infected when users click on email attachments or URLs, visit malicious/legitimate web sites, or install software from untrusted sources.

C&C protocols include IRC, HTTP, P2P.

Botnets used for attacks like DDoS, spamming, phishing, identity theft, ... etc.

According to Panda Labs, in 2Q 2008, 10 million bot computers were used to distribute spam and malware across the Internet each day.

Botnets are mostly used for spamming!

According to Marshall’s TRACE center:
- In the 1Q of 2008, about 85% of spam is generated by 6 Botnets: Mega-D, Srizbi, Storm, Pushdo, Rustock, Cutwail.

According to Symantec’s Message Labs Intelligence:

- Spam rate: 74.6%
Questions

- How does a typical spamming botnet work?
- How do botnets transmit spam?
- What can be done to make it nearly impossible for botnets to deliver spam?
- What tools and policies can be utilized at network edges?
- What tools and policies can be utilized at mail servers?

Spamming Botnet

- Spammer
- Control Servers
- Email templates
- Botnet Master
- DNS MX records
- Binary updates
Questions

- How does a typical spamming botnet work?
- How do botnets transmit spam?
- What can be done to make it nearly impossible for botnets to deliver spam?
- What tools and policies can be utilized at network edges?
- What tools and policies can be utilized at mail servers?

Email Transmission

[Diagram showing the process of email transmission with MUA, MTA, and MX Server]
Spam Transmission 1

Spambot composes message according to the given template
Spambot forwards email to an open relay server
Mail server relays email to recipient mail server

SpamTransmission 2

Spambot initiate a proxy connection (HTTP/SOCKS)
Proxy server forwards email traffic to a mail server
Spam Transmission 3

Spambot initiate a proxy connection (HTTP/ SOCKS)
Proxy server forwards email traffic through mail server of its own domain

Spam Transmission 4

Spambot initiate SMTP connection with recipient mail server
Questions

- How does a typical spamming botnet work?
- How do botnets transmit spam?
- What can be done to make it nearly impossible for botnets to deliver spam?
- What tools and policies can be utilized at network edges?
- What tools and policies can be utilized at mail servers?

Spam Control

Message Transmission Path

MTA → Router → Internet → Router → MX Server
Questions

- How does a typical spamming botnet work?
- How do botnets transmit spam?
- What can be done to make it nearly impossible for botnets to deliver spam?
- What tools and policies can be utilized at network edges?
- What tools and policies can be utilized at mail servers?

Egress Spam control at Routers

1. Manage port 25 traffic (*MAAWG 2008*)
 - Block mail traffic except from designated servers
 - In some networks, this cannot be adopted!!

2. Monitor DNS queries (*Romana et al. 2008*)
 - Identify spambots within a network
 - Based on their frequent DNS queries for MX records
 - Some botnets maintain DB for MX records

3. DBSpam (*Xie et al. 2006*)
 - Block/throttle spam laundry traffic
 - Discover proxy bots inside the network
 - Detect proxy traffic, not regular spam traffic
Ingress Spam Control at Routers

1. Local and dynamic Blacklists *(Cook et al. 2006)*
 - Identify IPs of spambots based on spam filters
 - Keep IPs in blacklists for a chosen period of time

 Spambots have dynamic IP addresses

2. Spam streams classification *(Argawal et al. 2005)*
 - Identify bulk email streams based on message similarities
 - Classify them as spam using a Bayesian classifier

 Template-based spam messages do not look similar

 - Identify distinguishing features of spam TCP flows (RTT, idle, FIN)
 - Use machine learning classifier trained on open relay MTA mail connections

 Choosing the right features is key

Summary – Control at Routers

<table>
<thead>
<tr>
<th>Method</th>
<th>Direction</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cook</td>
<td>In</td>
<td>Block email traffic from locally-blacklisted sources</td>
</tr>
<tr>
<td>Argawal</td>
<td>In</td>
<td>Detect bulk spam traffic</td>
</tr>
<tr>
<td>SpamFlow</td>
<td>In</td>
<td>Detect spam TCP flows</td>
</tr>
<tr>
<td>Manage Port 25</td>
<td>Out</td>
<td>Drop email traffic except from legitimate outbound servers</td>
</tr>
<tr>
<td>Romana</td>
<td>Out</td>
<td>Detect spambots DNS MX queries</td>
</tr>
<tr>
<td>DBSpam</td>
<td>In/Out</td>
<td>Block/Throttle proxy traffic</td>
</tr>
</tbody>
</table>
Questions

- How does a typical spamming botnet work?
- How do botnets transmit spam?
- What can be done to make it nearly impossible for botnets to deliver spam?
- What tools and policies can be utilized at network edges?
- What tools and policies can be utilized at mail servers?

Spam Control at MTAs

1. Email forwarding best practices
 - Specify inbound/outbound mail servers
 - Different port number (not 25) and user authentication
 spambot knows the port # and the user credentials

2. SMTP transaction Delay
 - Impose delay on suspicious requests
 - Suspicion based on SMTP RFCs compliance checks
 This delay will not affect spambots
Incoming Spam Control

1. Source IP address checking
 - Authorized mail server (SPF, DKIM, Sender ID)
 Spambots domain may not have such DNS records
 - Blacklists
 35% of spam comes from sources not listed in any blacklist

2. Greylisting
 - Refuse first delivery attempt, accept the second one
 Spambots can adapt and include this feature

3. SMTP session abort

Summary - Spam Control at Servers

<table>
<thead>
<tr>
<th>Method</th>
<th>Direction</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject open relays</td>
<td>In/Out</td>
<td>Block open relay attempts</td>
</tr>
<tr>
<td>Forwarding best practices</td>
<td>Out</td>
<td>Drop email from unauthorized users</td>
</tr>
<tr>
<td>SMTP delay</td>
<td>In</td>
<td>Delay spam and reduce its volume</td>
</tr>
<tr>
<td>Source IP checking</td>
<td>In</td>
<td>Drop email from untrusted servers</td>
</tr>
<tr>
<td>Greylisting</td>
<td>In</td>
<td>Refuse delivery attempts by untrusted sources</td>
</tr>
<tr>
<td>SMTP abort</td>
<td>In</td>
<td>Refuse delivery attempts from known suspicious sources</td>
</tr>
</tbody>
</table>
Review

Anti-spam is improving, but ...
Why the spam volume is not decreasing?

Answer: Botnets
 - Efficient Generation
 - Guaranteed Delivery

Solutions: Spam control at ...
 - Routers or network edges
 - Mail servers

Conclusions

- Botnet-generated spam:
 - Brings out new challenges
 - Opens new directions for solutions

- Intercepting spam while in transit is crucial

- New solutions should consider the nature of botnet-generated spam:
 - Distributed
 - Anonymous
Questions?
Comments?
Ideas?
hpp239@my.utsa.edu