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The spam filtering problem

I Two approaches for spam filtering :
I Knowledge engineering
I Machine learning : text classification

I Spam filtering is not a typical text classification problem :
I Adversarial classification : Classifying against an opponent

who will try to delude/break the filter
I Need for autonomy : Maintaining accuracy over time with

minimal human intervention
I False-positive issue : No acceptable false positive rate
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Idea

I Learning all messages is generally a bad idea

I Assumption : existence of a harmful knowledge

I Basic idea : identify these messages and do not learn them

I Formulate the learning process as an optimization problem,
and introduce a decision variable

I Purposes:
I Protect the filter against deluding strategies
I Provide better behaviour over time by preventing natural

degeneration of the filter
I Give the filter better generalization capability
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Why a selective approach ?

I Human communications are inherently redundant

I Human languages often contain misleading informations

I Especially true in the case of spam (repetitive commercial
strategies, deceptive messages)

I These characteristics may be difficult to capture in a feature
selection scheme
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Problem formulation

I Problem formulation: finding a training subcorpus such that
training on it maximizes the resulting filter’s accuracy on the
evaluation corpus

I A typical corpus : 103 to 106 learning messages

I A typical classifier learns in polynomial time
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Problem formulation

I Problem formulation: finding a training subcorpus such that
training on it maximizes the resulting filter’s accuracy on the
evaluation corpus

I A typical corpus : 103 to 106 learning messages

I A typical classifier learns in polynomial time

−→ we opt for a meta-heuristic implementation
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Implementation

I Genetic implementation

I Data : a set of messages C , a classifier f
I Representations

I Solution : boolean vector X of dimension |C |, Xi = 1 if
message i is selected

I Fitness : A(fC(X ),C ), weighted accuracy of resulting filter on
the set C , C (X ) = {ci ∈ C |Xi = 1}

I Operations
I Selection : elitist
I Cross-over : one point
I Mutation : random bit inversion

Didier Colin, Catherine Roucairol, Ider Tseveendorj Prism Laboratory University of Versailles Saint-Quentin en Yvelines FranceA Selective Learning Model for Spam Filtering



Outline
Motivations of this work

The selective learning model
Experiments and results

Online application
Conclusion

Genetic operations
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Experiments protocol

I Data sets : lingspam corpus 1(481 spams, 2412 legitimate
messages), SpamAssassin( 1897 spams, 4150 legitimate
messages)

I Classifier : Bernoulli naive bayesian, 60 words vocabulary
I Parameters :

I population size : 10 to 100
I mutation rate : 5 to 75
I initial solutions : random selection of 10% legitimate message

and 50% spam

I Metric : Total Cost Ratio =
A(fC(X ),C)

A(f∅,C) )

1Ion Androutsopoulos, J. Koutsias, K. Chandrinos, G. Paliouras and C. D.
Spyropoulos, An evaluation of Naive Bayesian anti-spam filtering”, Computing
Research Repository”, ”2000”

Didier Colin, Catherine Roucairol, Ider Tseveendorj Prism Laboratory University of Versailles Saint-Quentin en Yvelines FranceA Selective Learning Model for Spam Filtering



Outline
Motivations of this work

The selective learning model
Experiments and results

Online application
Conclusion

Results : TCR evolution for various population size

Didier Colin, Catherine Roucairol, Ider Tseveendorj Prism Laboratory University of Versailles Saint-Quentin en Yvelines FranceA Selective Learning Model for Spam Filtering



Outline
Motivations of this work

The selective learning model
Experiments and results

Online application
Conclusion

Results : TCR evolution for a population of 25 individuals
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Results : Overview

Table: Comparison of spam precision and spam recall for exhaustive and
selective learning algorithm

Exhaustive
learning

Selective
learning
(initial)

Selective
learning
(best)

Precision 96.82 % 96.85 % 98.72 %

Recall 88.33 % 89.60 % 96.47 %

I Better solutions found at the first iteration

I TCR improved by a factor 4

I Best solutions contain only 1/3 of the lingspam corpus
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Results on SpamAssassin

Bernoulli naive bayesian
perfoms bad (TRC < 1)

Initial solutions must be
almost exhaustive

Selective learning do not
bring much improvement
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Online selective learning

I Initial learning is only half of the job

I Is online selective learning possible ?

I Assuming no-user feedback

I Corpus → flow

I For each incoming message, a decision problem : shall we
learn it ?

I Idea : for each incoming message, test if learning this message
improves the filter’s precision over the N previous messages
(learning window)
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Online selective learning algorithm

Input: Wi , the i-th message on the mail flow, f , a classifier, N,
an integer

begin
f ′ ← copy(f )
if f(W) ≥ λ
then learn(f ′,W , spam)
else learn(f ′,W , ham)
C ← {Wj , i − N ≤ j ≤ i}
if A(f,C) ≥ A(f ′, C)
then return false
else return true

end
Algorithm 1: Online selective learning
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TCR evolution, regular lingspam

I Little to no
improvements

I Slight loss for
window = 50, 25

I Slight gain for
window = 500

I But global
evolution is even

I Easy mail flow →
conservative
learning strategies
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TCR evolution, noisy lingspam (5%)
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Conclusions

I A learning model specifically designed to address the issues of
spam filtering

I Easy to implement...

I Good synergy with existing techniques

I Not tied to a specific classification model
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Perspectives and future works

I Efficient heuristics for initial solutions ?

I Make use of non learned data

I Dynamic variations of online selective window
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Thank you !
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