
Worldview Manager:
An Automated Socratic Interrogation Framework

Scott Aaronson, Leonid Grinberg, and Louis Wasserman
{aaronson,leonidg,lowasser}@csail.mit.edu

September 1, 2009

Abstract

We present Worldview Manager (http://worldview.csail.mit.edu), a prototype
for a framework and website that help users uncover hidden inconsistencies in their
personal belief systems (“worldviews”). This is accomplished by presenting the user
with a series of statements and asking him or her to indicate the degree of agreement or
disagreement with the statement. Whenever a “tension” (contradiction) between two
or more responses is detected, the website presents the relevant responses, and gives the
user an opportunity to revise one or more of them, presenting, whenever possible, the
logical reasoning involved. It is our hope that this website will enable users to better
understand their political and philosophical views and why they hold to them, while
the framework on which it is built will enable developers working on related problems
to implement their own, similar programs.

1

Contents

1 Introduction 3
1.1 About this document . 3
1.2 Components . 4
1.3 Choice of technologies . 5

2 Related work 5

3 Installation 6
3.1 License . 6
3.2 Software requirements . 6
3.3 Downloading Worldview Manager . 7
3.4 Installing Worldview Manager . 8

4 Database structure 9

5 The framework 10
5.1 Variables . 11
5.2 The database querying library . 11
5.3 The data passing library . 12
5.4 Miscellaneous framework features . 13

6 The website 15
6.1 Sessions . 16
6.2 Views . 16
6.3 The .htaccess file . 21
6.4 Administration pages . 21

7 Compiler suite 22
7.1 Topic files . 22
7.2 WVMPreprocessor . 25
7.3 mktopic . 30

A API 32
A.1 Database querying Library . 32
A.2 Data passing library . 35
A.3 Miscellaneous Functions . 37

B Changing the Maximum Tension Arity 41

2

1 Introduction

We present Worldview Manager (http://worldview.csail.mit.edu), a prototype for a
framework and website that help users uncover hidden inconsistencies in their personal be-
lief systems (“worldviews”). This is accomplished by presenting the user with a series of
statements and asking him or her to indicate the degree of agreement or disagreement with
the statement. Whenever a “tension” (contradiction) between two or more responses is de-
tected, the website presents the relevant responses, and gives the user an opportunity to
revise one or more of them, presenting, whenever possible, the logical reasoning involved.

In principle, such a general specification is no more than a truth maintenance system1

with a user-interface built on top. However, there is no requirement that the system parse and
understand the statements it presents and then try to determine the tensions automatically.
While, in theory, such advanced functionality would work perfectly well with the system,
the only main requirement, as far as Worldview Manager is concerned, is that there is some
database of statements with explicit instructions as to which combinations are logically
inconsistent. Whether the database is generated by human or machine is essentially a matter
of implementation.

1.1 About this document

This document is intended to act as definitive documentation of Worldview Manager’s inter-
nal functionality. It is not intended to be read by users of the program; indeed, much of the
internal functionality is intentionally hidden from the end user, with only basic, interface-
level instructions presented as necessary. Anyone wishing to understand intimately how
Worldview Manager works should read this document. Care has been taken to reference
specific code and specific files, so the reader is strongly encouraged to read this document in
parallel with the actual source files.

Those wishing to simply install a copy of Worldview Manager without understanding
how it works can safely stop reading after section 4, which describes the database structure
that Worldview Manager needs.

This document assumes a general knowledge of modern programming and web paradigms
and technologies. It is helpful to have a working knowledge of HTML syntax, MySQL use and
PHP programming (or at least PHP syntax) when reading this document. Some knowledge
of Haskell and Scheme will be helpful for sections 7.2 and 7.3, respectively. Lastly, some
basic knowledge of standard UNIX (or, more relevantly, LAMP) servers – including shell
scripts and Apache administration – will be very helpful, though not strictly necessary.

All file paths in this document are written relative the root of the source tree.

1Technically, a truth maintenance system would include some built-in heuristic by which it would de-
termine what data to accept and reject in the event of a contradition. However, the modification that the
contradiction is resolved by the data source, rather than by the system itself, is not a particularly significant
one.

3

1.2 Components

Our prototype consists of the following parts:

• A MySQL database with several tables specifying “topics” (isolated2 groups of state-
ments and tensions between them), statements, and user responses to statements. We
also have a table for user comments which appear on the page for every topic, state-
ment, and tension.

See section 4 for more on the database.

• A PHP-powered framework for manipulating the database and passing data between
different components of the application.

See section 5 for more on the framework (specifically section 5.2 for the database
querying library and section 5.3 for the data-passing library). See appendix A for
the API that comes with the framework (specifically appendix A.1 for the database
querying API and appendix A.2 for the data-passing API).

• A PHP-powered website that uses the framework to generate user-visible HTML and
Javascript. Other, more static files, including CSS and Javascript programs, are served
directly by the web server (in our case, Apache).

See section 6 for more on the website. Special components of the website include:

– A .htaccess file that manages some of the more specific and quirky behaviors
of the website. Most importantly, this file contains a configuration for semantic
URLs that make the site easier and friendlier to use.

See section 6.3 for more on the .htaccess file.

– Administration pages, written in PHP, that allow for relatively easy administra-
tion of topics. Specifically, they allow for the uploading and deletion of topic files
through a web interface, as well as some aggregate statistics about user responses.
The pages are not currently intended to be viewed or used by ordinary users, but
the code base can be relatively easily adapted to that functionality, e.g. via user
accounts.

See section 6.4 for more on the administration pages.

• A compiler suite for ”topic files” that converts from a user-readable format in a logic-
based notation into SQL.

See section 7 for more on the compiler suite. The suite includes:

2See sections 4 (Database structure) and 7.1 (Topic files) for a more thorough discussion of cross-topic
tensions.

4

– WVMPreprocessor:

A preprocessor, written in Haskell, that validates most of the input, makes all
logical inferences that it can, translates any LATEX code to HTML or PNG images
via the texvc utility, and then translates the logical syntax to a much more
verbose syntax.

See section 7.2 for more on WVMPreprocessor.

– mktopic:

A compiler, written in Scheme, that reads the output of WVMPreprocessor and
generates a SQL script that, when executed, uploads statements and tensions.

See section 7.3 for more on mktopic.

1.3 Choice of technologies

Since any choice of language and technology for the implementation of a system is the subject
of much controversy, we would like to take a moment to defend our particular choices.

Specifically, we chose MySQL for the database system due to its ubiquity in installations,
the fact that many different clients and installations can all access the same database, and
the excellent support that PHP has for it.

PHP was chosen as a robust, powerful and well-known language, and is a sort of com-
promise between power on one hand and cleanliness of code and strict adherence to a MVC
system (as featured in many other web frameworks such as Django or Rails) on the other.

Apache was chosen due to its convenience as a robust and ubiquitous web server.
Lastly, the compiler suite was written in Haskell and Scheme due to the preference for

these languages by the authors as well as due to the fact that performance is a much smaller
issue for those programs – the programs only need to be run once per topic file.

2 Related work

The idea of mixing strict logical consistency with a computerized process is hardly novel.
As described in section 1, Worldview Manager essentially serves the purpose of a truth
maintenance system, albeit in a highly specialized manner. That said, it is this highly
specialized purpose of Worldview Manager that is the bulk of our contribution.

One motivation for Worldview Manager is the very large number of political and philo-
sophical tests and surveys that the Internet has to offer3. Besides being inconsistent and
vague in their questions (something that Worldview Manager probably can also be blamed
for), these sorts of websites do not actually attempt to interpret the responses of the user in
any way, instead relaying to the user a summary of his or her personality/philosophy/polticial
belief system. Some systems, most notably http://politics.beasts.org, do make some
effort to detect inconsistent responses, but this is done primarily to ensure consistency in

3See http://www.politicalcompass.org, http://politics.beasts.org,
and http://typology.people-press.org/typology/ for a few examples

5

question interpretation; not only are most questions not subject to these sorts of confirma-
tions, but the inconsistency is never presented to the user and instead silently ignored.

Therefore, it is the primary functional goal of Worldview Manager to ensure a consistent
set of responses. The meaning of the responses themselves, beyond their relationship to each
other, is entirely irrelevant to the system. Thus, Worldview Manager’s goals are, in some
sense, orthogonal to those of the systems mentioned above; one can imagine a system that
not only interprets a set of responses as indicating some specific political leaning, but also
insures that such a set of responses is in fact logically consistent.

Similarly, there have been and still are many attempts to teach computers to parse
human languages, from projects such as OpenMind4 to those such as START and Wolphram
Alpha5. While ostensibly, these sorts of projects have goals entirely independent from those
of Worldview Manager, there are a number of similarities, albeit at another level. Specifically,
the database component of Worldview Manager is entirely human-generated, which is not
only somewhat of a tedious process, but also error-prone. Therefore, one can easily imagine
a combination of Worldview Manager and some of the systems outlined here, in which a
shared database allows a human language parser to both parse responses as well as generate
questions to answer, while Worldview Manager provides a more high-level framework to
ensure logical consistency in the responses.

It is this compatibility between Worldview Manager and such a wide variety of projects
that serves as motivation for the design choices we made. An open and relatively generic
database model, combined with a fairly standard HTTP-based session management system
adds modularity not only to the individual components of Worldview Manager, but also to
the whole program as a component of some other, even larger system.

3 Installation

This section describes the process of obtaining and installing Worldview Manager.

3.1 License

Worldview Manager is licensed under the Apache Software License version 2.06. It uses
several other libraries and packages. For a complete list, see the file NOTICE.

3.2 Software requirements

This section provides a complete list of the software Worldview Manager needs in order to
properly run.

4See http://openmind.media.mit.edu
5See http://start.csail.mit.edu and http://www.wolframalpha.com
6See http://www.apache.org/licenses/LICENSE-2.0.html or the file LICENSE for more details.

6

PHP 5: The framework and website components of Worldview Manager are all written
in PHP. Several features used require PHP 5. Though Worldview Manager has not
been tested on PHP 6, it should work, perhaps with minimal modifications. See
http://www.php.net.

MySQL 5: The database querying library relies on MySQL being present to obtain data.
Version 5 is necessary for some of the functions. See http://www.mysql.com.

Apache HTTP server with mod rewrite: Worldview Manager can run on any web server,
as long as the URL rewriting rules as provided. The .htaccess file (see section 6.3) pro-
vides these, and several other, useful features. The reader is strongly encouraged to look
at .htaccess if porting to another server is desired. See http://httpd.apache.org.

Haskell compiler and libraries: WVMPreprocessor (see section 7.2) is written in Haskell;
having a compiler or any libraries is not actually necessary both because using the
compiler is not necessary and because the compiled version has all required libraries
statically linked. However, any modifications to the program will require a compiler
and libraries. See http://haskell.org/ and
http://www.haskell.org/haskellwiki/Parsec.

The texvc utility of MediaWiki: WVMPreprocessor (see section 7.2) utilizes texvc to
translate LATEX code into HTML or PNG images. The utility is not included with
Worldview Manager, and must be downloaded separately as part of MediaWiki. See
http://www.mediawiki.org.

Bourne Again SHell (BASH): WVMPreprocessor (see section 7.2) uses a shell script to
invoke texvc (see above). BASH is necessary for this script to run, which is necessary
if WVMPreprocessor is to be used. See http://www.gnu.org/software/bash/.

Bigloo Scheme compiler and libraries: The mktopic program (see section 7.3) is writ-
ten in Scheme for the Bigloo compiler; having either the libraries or compiler installed
is not necessary only insofar as using mktopic is not necessary. The Bigloo libraries
are not statically linked, and so using mktopic without them installed is impossible.
The program was written for version 3.2a, but later versions should be backwards
compatible. See http://www-sop.inria.fr/mimosa/fp/Bigloo/.

3.3 Downloading Worldview Manager

The code for Worldview Manager is held in a Git7 repository. The repository contains the
source code to every file used on the website (including all PHP, Javascript, HTML, and CSS
files), along with the compiler suite (see section 7) source and binaries, configuration files,
.htaccess files (see section 6.3), topic files (see section 7.1), the Apache Software License
and helper NOTICE file (see section 3.1), and the LATEX source code of this documentation.

7See http://www.git-scm.com for details.

7

The repository can be downloaded at http://www.gitorious.org/worldview, e.g. with
the command “git clone git://gitorious.org/worldview/worldview.git”.

3.4 Installing Worldview Manager

In order to “install” Worldview Manager, it needs to be placed in a folder that the web
server can see. This is a process that depends strongly on a particular setup – for some
installations, placing the code into a subdirectory of, e.g. /var/www, is enough; for others, a
virtual host might be required. Please check with your system administrator for details.

The only part of the website that should be directly accessible to the webserver is
the manager/ directory. However, for the files in manager/admin/ to work (specifically
manager/admin/topic list.php, manager/admin/upload topic.php, and the compiler bi-
naries), it is necessary for the files in the directory above manager/ to be accessible by the
web server (but not the web browser).

Once this is done, the following steps should be taken:

1. The MySQL database should be set up according to the structure described in section
4.

2. The configuration file conf/dbinfo should be edited – the first line should contain the
database server, the second line the user, and the third the password for the user.

3. The salt text (the value of the variable $SALT in manager/lib/usercookie.php) should
be changed to something very long and hard (read: impossible) to guess. We recom-
mend using a random-password generator.

4. The directory manager/media/images/topic explanations needs to be created in
such a way so that the server can write to it. This might involve changing POSIX or
AFS permissions.

5. If the compiler suite is used (see section 7), mktopic has to be compiled. In the
directory topic file parsers/mktopic, run something along the lines of
“bigloo -o mktopic mktopic.scm database.scm parse.scm” .

6. (Optional, but highly recommended) The manager/admin directory should be
password-protected. The easiest way to do this is to create a .htpasswd file8 and add
the authentication directions to manager/admin.htaccess.

7. (Optional) The .htaccess file (manager/.htaccess) should be edited to include any
server-specific quirks.

8. (Optional) Git should be configured. The exact details of this depend strongly on
the particular setup, and whether or not you git is going to be used. We recommend
setting up a hook on the server that will automatically compile mktopic whenever a
push is made. See http://git-scm.com/ for more information.

8See http://httpd.apache.org/docs/2.0/programs/htpasswd.html for more information.

8

4 Database structure

Worldview Manager’s database uses MySQL. The prototype is hosted by the MIT Computer
Science and Artificial Intelligence Laboratory (CSAIL)9, which operates a centralized MySQL
installation. This installation is utilized over other alternatives, including SQLite, which
provide portability at the expense of centralization. Since we do not expect our prototype to
move to a different server, the use of MySQL was particularly beneficial as it allowed several
checkouts of the code, including local development versions on the authors’ computers, to
access the same database without any problems.

4.1 Tables

The MySQL database is called worldview and has the following tables:

• topics – A list of topics, each with a unique topic id (a positive integer serving as the
primary key), a topic name, and topic text that describes what kinds of statements
are in the topic.

• statements – A list of statements, each with a unique statement id (a positive integer
serving as the primary key), a corresponding topic id of which the statement is a part,
the statement text, and a short ident (an internal identifier which is never seen by
the user, but which allows for the formatting of tension explanations by the website –
see section 7.1 for more on Topic Files and tension explanations).

• tensions – A list of tensions, each with a unique tension id (a positive integer
serving as the primary key), a tension explanation, and a series of “statement”
and “agreement” pairs. In each pair, the “statement” (labeled statement i) is a
statement id from the statements table and the “agreement” (labeled agreement i)
is either 1 for agreement or 0 for disagreement. At present, the database holds up to
four such pairs10 (so i can range from 1 to 4). Those rows that don’t use all four pairs
can hold NULL values in some of their cells.

Note that there are no topic ids because the statement ids from statements are
globally unique. This means that, at least on the database level, cross-topic tensions
are pefectly acceptable. If the database does contain cross-topic tensions, the website
will essentially behave appropriately, though some odd behavior might be encountered
in some places. See section 7.1 (Topic files) for more about cross-topic tensions.

As an example, the table row

tension id statement 1 agreement 1 statement 2 agreement 2 statement 3 agreement 3 statement 4 agreement 4 tension text

17 42 1 17 0 91 1 NULL NULL Foobar

9See http://csail.mit.edu.
10See Appendix B for information about how to properly modify this value to something other than 4.

9

shows a tension with a tension id of 17 and the (somewhat unhelpful) explanation
“FOOBAR”. It is triggered when the user agrees to the statements with the statement ids
42 and 91 and disagrees with the statement with a statement id of 17. There is no
fourth statement involved in this tension.

• users – A list of “users”. In our prototype, a user simply has a numeric user id

(a positive integer and the primary key in the table), a time and date indicating the
last action performed, and a name. The name for most users is NULL and is only
generated when the user makes a comment (see the bullet for the “comments” table as
well as section 6.2.8 for more on comments).

• user responses – A list of responses. Each response has a unique response id (a
positive integer serving as the primary key), with a corresponding user id (indicating
the user who made the response), statement id (indicating the statement to which
the user responded) and response (a floating point number from -1 [complete dis-
agreement] to 1 [complete agreement]). There is also a time column, indicating the
time and date when the response was made.

• responses history – This table is identical to user responses. Its purpose is merely
for the gathering and analysis of statistical data – users whose sessions has expired are
moved from user responses to responses history. See section 6.1 for more on
sessions.

• deferred tensions – A list of user ids and tension ids, as well as a time column
that indicates when the tension was deferred. See section 6.2.6 for more on deferred
tensions.

• comments – A list of comments. Comments appear on Topic, Statement, and Tension
pages. See section 6.2.8 for more details on comments as well as sections 6.2.2 (Topics),
6.2.3 (Statements), and 6.2.4 (Tensions) for more information about the respective
views. Each comment has a unique comment id (a positive integer that serves as the
primary key), a user id indicating the author of the comment, a time indicating the
time the comment was written, an area (either “topic”, “statement”, or “tension”) and
a target id indicating the relevant ID (either topic id, statement id, or tension id

as indicated by area).

5 The framework

The bulk of Worldview Manager is a PHP-based framework that faciliates the manipulation
of the database (see section 4) to provide data for a variety of views (see section 6.2) – in
our prototype’s case, for a website. The framework provides a wide array of functions and
several variables, all of which are documented in the API (Appendix A). Roughly, they can
be divided into three groups – a database querying library, a data passing library, and a
collection of miscellaneous features and utilities.

10

5.1 Variables

Several (global) variables are provided by the framework. As a policy, all are written using
capital letters:

$USER ID Stores the user ID of the current user. In our prototype, it is first defined in
lib/usercookie.php. However, this is mostly a matter of convenince, since in our
prototype, the user ID is dictated solely by the contents of a cookie. In another
implementation, this may not be the case.

$TOPIC ID Stores the current topic ID of the current user. In our prototype, it is also first
defined in lib/usercookie.php, and this is also mostly a matter of convenience – one
can easily imagine a different prototype where the current topic is defined by something
other than a cookie.

$MAX ARITY Stores the maximum number of statements that can be involved in a tension.
This is used primarily in the database querying library to generate SQL queries. This
variable is currently set to 4, and is read from the file conf/max arity. The process
of seamlessly changing it is somewhat involved; see Appendix B for details.

5.2 The database querying library

The Worldview Manager database querying library is intended to be a centralized collection
of every function involved in retrieving and processing data. Unlike the data passing library
(see section 5.3), it is used specifically for data retrieval and processing, rather than for
communication between different views.

As a policy, every direct call to the database is written as a function in the database
querying library; the intention of this is to decouple and abstract the process of data retrieval
from the rest of the website as much as possible. That said, our prototype’s views do assume
the use of MySQL, as they rely on the fact that database querying functions all return the
results of calls to mysql query() (which can then be processed via mysql fetch row(),
mysql fetch array(), etc). It is our hope that the system may someday be refactored so
as to abstract these details even further into the library.

The database querying library is in many ways more complicated than the data passing
library – not only is it larger, but it is also arguably more ambitious in scope, while also
being considerably more low-level. Furthermore, like the data passing library, it has its own
set of security issues to deal with, mostly having to do with SQL injection attacks. Care
has been taken to avert such security issues, in part by taking advantage of the fact that
since the majority of data used is numeric (and integral), running intval() on the data
or checking that is numeric() returns true before processing it, would remove malicious
requests while preserving benign ones. In cases where these sorts of tricks do not work,
standard functions such as mysql real escape string() are used. However, we attempt to
minimize this usage in part due to its inconsistent behavior with and without Magic Quotes.

11

The bulk of the database querying library is used for data retrieval. These functions all
return data via the result of a mysql query() in some specified format, which is described
on a per-function basis in the API (appendix A.1).

There are also several functions in the library that are designed to add data to the
database. These functions accept data in some specific format described in the API and
upload it to the database. In some cases, a return value is given.

Lastly, there are a few functions in the library whose goal is to process data. The two
most important examples of this are pick statement() and find disagreements(). For a
complete list, please see the API. These functions utilize some of MySQL’s more complicated
features to quickly process the data given – in other words, rather than simply obtaining a
list of responses and tensions and looping through each in PHP to find tensions, the library
performs this entire process on the database level. While this does cause the program to be
somewhat less portable, it also adds a significant speed boost, and means that porting some
of the more complicated aspects of the library to another language (although not another
database model) is relatively straightforward.

5.3 The data passing library

The data passing library is a large collection of functions intended to centralize the exchange
of data between different HTTP requests. Like Sessions (see section 6.1), it is intended
to bypass the limitations posed by HTTP’s statelessness. On a more nebulous level, it is
intended to centralize all direct interactions with HTTP, so no direct references to HTTP
variables (including GET, POST or cookies) need to occur from within the code used to generate
views. If Worldview Manager were to be ported to a different platform that doesn’t use
HTTP (at least not in the same way), the actual code in the data passing library would have
to be modified, but the API would not be changed. Thus, this library can be seen, in a way,
as “glue” for the website and the framework components of Worldview Manager.

Like the database querying library (see section 5.2), the data passing library is divided
into several files, roughly aligned with the various MySQL tables (or by an alternate inter-
pretation, with the different website views).

It is not the intention of this section to describe the functions in the library, neither from
the standpoint of an API (for that, see Appendix A.2) nor from that of a description of
functionality (for that, see the code). Instead, several conventions used within the library
are discussed, with an overall emphasis on general purpose, rather than specific functionality.
Again, the reader is strongly encouraged to see Appendix A.2 for the API, which includes a
complete description of all functions in the library.

As a side note, since the majority of the data passed between files in Worldview Manager
is numeric, the data passing library adds an extra layer of security by forcing the data it
operates on to be numeric, when appropriate – either by checking if is numeric() returns
true before operating on data or simply by overwriting the data to its intval() represen-
tation. That said, developers wishing to use the data passing library are still encouraged to
perform their own security checking on data.

12

5.3.1 Getting data

The majority of views in Worldview Manager – indeed in any site with user interaction as
the primary feature – need to read data generated earlier in another HTTP connection. In
many cases, this data comes from the database, in which case it is provided by the database
querying library (see section 5.2). However, some data is either too new to have yet been
written to the database (e.g. the response to a statement as it is being passed to a function
whose purpose is to record it in the database rather than to read it) or is not the sort of data
that is written to the database in the first place (e.g. which link a user clicked on to load a
particular view). This sort of data might be passed in a number of ways including writing to
a file, communicating through a pipe, etc. In the case of our prototype, however, we limited
ourselves to the somewhat more humble functionality of HTTP GET and POST variables.

The names of functions whose job it is to read data from a HTTP variable are, as a rule,
prefixed with “get ”. These functions do not take any arguments because they read from
an external source (the HTTP variables). All of them return some data that is referenced
by the values held in the relevant variables, though the exact data (either the value itself or
the data referred to by that variable) depends on the specific function. These functions have
no side effects.

5.3.2 Sending data

Since the functions that read data do so primarily through HTTP GET variables, which, in
practical terms, are almost inseparably tied to URLs, it is very important that URLs are
formatted correctly so that the data can be read properly. The data passing library attempts
to centralize and abstract this process by a series of functions whose job is to “send” data.
As a rule, the names of functions whose job it is to send data begin with send ; they take
an argument, which is the data to send, formatted in some way (see the API in Appendix
A.2 for specific details) and return a string, the URL of the data. These functions also do
not have any side-effects.

5.3.3 Miscellaneous functionality

There are several functions in the library that have jobs that do not fit into the generalizations
outlined above. One is redirect(), which in our prototype’s case is a simple wrapper for
the HTTP Location: header. The other is make deferrals() which is a wrapper for the
defer tension() function from the database querying library. It has a side effect but is
in the data passing library primarily to follow through on the promise of centralizing all
HTTP GET and POST functionality. Please see Appendix A.2 for the API, which contains
more details on these (and all other) functions.

5.4 Miscellaneous framework features

Besides the two main components of the framework – database querying (see section 5.2
and data passing (see section 5.3) – several other miscellaneous features are provided for the

13

purposes of abstraction, centralization, and convenience. These are outlined in the sections
below.

Note that the file manager/lib/usercookie.php, while being fairly tightly coupled with
the functions in the framework, is not, strictly speaking, part of the framework itself. Instead,
it is the glue that connects the Sessions feature of the website (see section 6.1) with the rest
of the library.

5.4.1 Templates

Templates are simple ways to mix static and dynamically-generated code. A template file
is simply an HTML file with extra tags, stored in the manager/templates/ directory. The
template system is inspired by that of Django, but is considerably simpler.

A template is loaded by a PHP file by creating an instance of the Page class (as defined
in manager/lib/templates.php). The constructor for Page objects takes two arguments –
$template, the template filename (relative to manager/templates/), and $tags, an asso-
ciative array with the keys being template variable names and the values being the values
(which must be strings) that those variables hold.

Template variables are unique strings enclosed in double-curly-braces (i.e. {{ varname }}).
Their value is also a string, and when a Page object is created, each instance of {{ varname }}
in the code is replaced by $tags["varname"], if it is set. The resulting code is placed in
the public variable $this->output (where $this is a pointer to the specific instance of the
Page class).

Note that unlike in Django, the template system is not a self-contained, minimalistic
language. There is no way, for instance, to use a loop within a template, and one cannot use
the template languate to access member variables or methods.

Note also that, in many cases, the data passed to a template will actually be generated by
another template. As an illustration of this, several “generic” templates are used throughout
the website. For instance, the template in manager/templates/generic/header.html has
three variables, one for text to go between the HTML <title></title> tags, one for the
navigation bar code, and the third to act as the “Loc” text (see section 5.4.2 below for
more on the navigation bar and Loc). The function header template(), as defined in
manager/lib/util.php returns the output that is generated by this template, and can be
used in other templates.

5.4.2 Navigation bar and Loc

There are two methods of global site navigation within Worldview Manager – the navigation
bar and Loc.

The navigation bar has links to the main sections of the website. They are defined
by two variables in the function navbar() as defined in manager/lib/util.php. The first
variable is the associative array $urls which matches PHP files to semantic URLs (see section
6.3 for more on semantic URLs as defined in the .htaccess file). The second variable is
the associative array $pages which matches semantic URLs to the text of the link in the

14

navigation bar page. When calling the header template() function, the third (optional)
variable is called $page. It is passed as an argument to the navbar() function, and checked
against each key of $urls, and the resulting value, if it exists, is checked against each key
of $pages. If one matches, the HTML code for the link is given the additional HTML class
“curr”, which allows the CSS (specifically manager/media/css/header.css) to style the
link appropriately.

Loc is a system completely decoupled from the navigation bar. Its goal is to generate
a small text of links near the top of pages that simulate a sort of tree-like structure to the
webpage. Each link is of the form Together,
they are all surrounded by <div id="loc"></div> tags.

Loc defines a new class, called PathElement, which is constructed with a mandatory
$text variable (between the <a> tags), an optional $span special variable (usually
holding either false or class="separtor") that can go inside the tag, and an
optional $link variable, which can hold the value that goes inside of the href argument of
the a tag.

Loc provides three functions. The first, make path(), takes either a single PathElement

or an array of them and produces a new array, $path, which has each of the PathElements
in the same order, but with a special “separator” element between each one and a “root”
element followed by the separator element prepended. The root element is an instance of
PathElement with $text set to “Worldview Manager”, no $span special and a $link point-
ing to “/worldview/home”. The separator element is an instance of PathElement with $text

set to “»” (the HTML symbol for �), $span special set to ‘class="separator"’,
and no $link. This $path variable can then be passed to two other functions, one called
make title(), which returns the text member variable of all the PathElements passed to
it (i.e. just the text, no or <html> tags), and the other called make loc(), which
returns the html member variable of all the PathElements passed to it. The strings returned
by make title() and make loc() can then be passed as the first and second arguments,
respectively, of header template().

6 The website

The website component of Worldview Manager consists of several PHP files which utilize
functions from the framework to generate relatively simple and clean HTML, CSS, and
Javascript11 files. Most of the data used to generate these files is stored in a MySQL database
(see section 4). As written, the website is designed to be used with Apache, though porting to
another web server should be relatively straight-forward as the only Apache-specific features
that are are used are in the .htaccess file – see section 6.3).

11Including some AJAX, when the browser supports it. See section 6.2.8 on the Comments view.

15

6.1 Sessions

The prototype has no concept of user accounts, though adding them as an extra feature would
be relatively straight-forward, to the point that much of the website and framework were
written specifically with the intention that such an addition could be easily accomodated.
Instead, we track users using “sessions”. Since HTTP is a stateless protocol, the system
simulates the concept of a session using HTTP cookies.

As described in section 4 (Database structure), the system keeps track of “users” via
user IDs. A user ID is stored in a HTTP cookie called worldview uid. In order to prevent
malicious users from tampering with the cookie and thus being identified as a different user
(something that is a serious security issue with user accounts and at best a glaring oversight
without them), there is a second cookie called worldview hash. This cookie is a string of
secret “salt” text (hardcoded in the PHP code) along with a user ID, all encrypted with
the SHA-256 algorithm. Before identifying the user with a particular user ID, the program
encrypts the user ID against the salt and compares the hash values. If they match, the
user is identified with the user ID, and if not, a new user ID is given, and both cookies are
overwritten.

There is also a third cookie, called worldview topic id, which contains the Topic ID of
the user’s “current topic”. This feature is the main reason that having cross-topic tensions
is not entirely supported. However, it exists because it allows for a natural way for a user
to independently work on several different topics, and to allow the system to present him or
her with a summary of only the statements from the topic he or she just completed (though
a way to show a summary of all statements responded to this session is also available). If
there is no current topic, the cookie holds the value “0”.

All three cookies are available from the root of the server (necessary due to the semantic
URLs – see section 6.3) and expire a day after they are set (which happens every time a new
page is loaded).

6.2 Views

Following accepted web design practices, Worldview Manager is organized around a MVC
structure. The Model is encapsulated in the database and the queries made to it (see section
4 fore more on the Database structure and section 5.2 for more on the the database querying
library). The controller is encapsulated in the data passing system (see 5.3 for more). The
views are encapsulated in a custom HTML template system, along with statically-written
CSS and Javascript files, as well as PHP scripts that generate further HTML, CSS, and
Javascript code dynamically.

6.2.1 response.php

The file manager/response.php is used heavily by the system. Its job is to parse responses
to statements and redirect to proper views.

Before doing anything else, it checks to see whether the previous action was to “defer”

16

a tension (see section 6.2.6 for more on deferred tensions), and if so, it makes the deferral.
After doing this, it checks to see whether a response was given, and if so, records the response
in the database.

It then determines the next view to redirect to in the following order:

• If the function find disagreements() in manager/lib/db/query/query tensions.php

returns a tension, the function redirects to the Tension view (section 6.2.4) with the
tension information.

• Otherwise, the function checks to see if the pick statement() function in manager/lib/

db/query/query statements.php returns a statement ID. If so, it redirects to the
Statement view (section 6.2.3) with the statement information. This happens when-
ever there are statements in the current topic that the user has not yet responded
to.

• Otherwise, the function checks to see if the user has made any responses to the current
topic at all. If so, it redirects to the Summary view (section 6.2.7), and if not, it
redirects to the Topic view (section 6.2.2).

All redirections made by this file are done using the function redirect() (as defined in
manager/lib/data passing/data passing util.php), which is a wrapper for the HTTP
Location: header. This adds some overhead to page loading time, but we believe that the
benefits provided by this arrangement outweigh the costs. Specifically, the system allows
complete decoupling of the framework from the rest of the website. This sort of decoupling
is stronger than the kind that could be achieved by having a single centralized file that
dispatches functions, because the components are closer to being self-contained, complete
programs.

6.2.2 Topics

The Topic view is handled by manager/topic.php, with the templates manager/templates/
topic/topic.html and manager/templates/topic/topic page.html, and styled by the
CSS file manager/media/css/topic.css. There are actually two different Topic views –
one with links to all the different topic pages and the other being the topic pages themselves.

The former is launched if topic.php is launched with no topic id HTTP GET variable
or with a value that is not a valid topic ID. The view prints a list of links to all the topics,
with the URL being /worldview/topics/[topic id] and the text of the link being the
topic text. The URL is then rewritten by the .htaccess file to /worldview/topic.php?

topic id=[topic id]. A list of all topic IDs that have been completed (i.e. all statements
within them responded to) by the current user is obtained, and all links to these completed
topics are given the extra HTML ‘class="done"’ which is styled to produce a link written in
a grey font color and with a line through it. If there are any such links, an extra explanation
about what such links mean is added. When this view is loaded, the worldview topic id

cookie is set to 0.

17

Topic pages are the other kind of Topic view. This view is launched when the topic id

GET variable contains a valid topic ID. When this view is loaded, the worldview topic id

cookie is set to the topic ID of the topic, and some generic instructions about how the website
works are presented along with the specific topic name and topic explanation and a link
back to the main Topics page. Also, the system detects the “status” of the topic – whether
the user hasn’t responded to any of the statements, whether he or she has responded to some
of the statements, or whether he or she has responded to all of the statements. The specific
status is displayed along with a link that allows the user to either “begin”, “resume”, or “clear
answers and start over” the process of responding to statements. In the “resume” status,
an extra opportunity to clear old answers before resuming is presented, and in the “clear
answers and start over” status, an opportunity to view a summary of the responses given is
presented (see section 6.2.7 below for more on the Summary view). In all cases, the link of the
action points to /worldview/topics/start (with the exception of the “clear answers and
start over” link which points to /worldview/topics/start?done topic=[topic id]). The
.htaccess file rewrites this URL to /worldview/start topic.php (preserving the GET
variable, if present), which then redirects to response.php (see section 6.2.1 above for more
on response.php).

6.2.3 Statements

The Statement view is somewhat more complicated than the Topics view. It is handled by
manager/statement.php and uses a collection of templates located in manager/templates/

statements/. This view (as well as the Tensions view – see section 6.2.4 below) attempts to
use a modified version of the “Slider” package, written by Erik Arvidsson and distributed un-
der the Apache Software License 2.0 at http://webfx.eae.net/dhtml/slider/slider.html.
The Slider package is essentially a collection of static Javascript (in manager/media/js/

slider/), CSS (in manager/media/css/slider/), and image (in manager/media/images/

slider) files intended to be called from HTML code that uses them. However, since World-
view Manager uses templates, and, especially in the Tensions view, the file needs to be
generated mostly dynamically, this process is somewhat more involved than the standard
method that is described in the Slider package’s documentation.

Specifically, each template creates an instance of the Javascript Slider class called sx
where x is the number of the slider on the page. For the Statements view, there will
only ever be one slider, so x is always 1. The Slider class is defined in the Javascript
file manager/media/js/slider/slider.js. Internally, the Slider system uses a hidden
<input> for each slider, with the name six. Additionally, each slider is followed by a
<noscript></noscript> block which contains a simpler HTML form if Javascript is dis-
abled. It is worth noting that this is different from the documentation’s suggested use,
which is to create a text input that is hidden only by javascript; we create a hidden input
because we have the more complicated <noscript></noscript> system for browsers that
don’t support Javascript.

Note also that while the database and framework assume that user responses are encoded
as floating point numbers from -1 to 1, the Statement view internally represents them as

18

integers from -10 to 10. This is done because the Slider package does not support fractional
increments. All conversions are done by manager/statement.php and helper functions.

Besides presenting the slider, it is the responsibility of the Statement view to present
generic instructions for the user, as well as the actual statement text, and a button labeled
“respond”, that, when pressed, submits the actual response (along with the statement ID,
which is a hidden field), via HTTP’s POST method to response.php. Also, if there are any
deferred tensions (see section 6.2.6 below), a link that allows the user to address the tensions
is provided.

The URL for the Statement view is of the form /worldview/statements/[statement id].
This is translated by the .htaccess file to /worldview/statement.php?[statement id]=0.
The reason for this is that, since the statement has not yet been answered, the slider will be
initialized at position 0 (“completely neutral”). The Tension view (see section 6.2.4 below)
uses a similar URL structure, except that the sliders are not initialized at 0.

6.2.4 Tensions

Though it appears as a separate view to the user, the Tensions view is actually a sepa-
rate mode of the Statements view. In it, multiple statements are presented side by side in
a table (at most two per row). Additionally, the view is responsible for providing (some-
what different) generic instructions, a link to “defer” the tension, and a link that opens the
tension explanation (if available) in a popup window (the tension explanation is stored as
tension text in the database).

Each slider is initialized to the response given to it via the URL (in much the same way
as they are given in the Statements view, except the response is set to something other than
0. The same “Respond” button is provided and has the same internal effect – the response
to each of the statements involved in the tension is updated, and after which the next view
(which might be again a tension, possibly the same one) is loaded.

6.2.5 Tension explanations

The tension explanation view is provided by manager/tension.php. It is meant to be opened
in a popup window. Internally, it uses the data passing library (see section 5.3 above) to
retrieve the tension text and format it in a readable manner. This is performed by the
function handle explanation() in manager/lib/explanation parser.php. For more on
how this function works, see the end of section A.3 (miscellaneous functions of the API).

6.2.6 Deferred tensions

In some cases, a user might be reluctant to change their response to a statement, even if
they are presented with an explanation as to why it is logically inconsistent. In this case, the
user may choose to “defer” the tension. Deferred tensions are never again presented to the
user, except that the Statement, Tension, and Summary views each have a link mentioning
that there are still unresolved (i.e. deferred) tensions that ought to be addressed.

19

Each of these links points to /worldview/tensions/deferred which is rewritten by the
.htaccess file to /worldview/deferred tensions.php. This file generates a view which is
essentially a list of “tension summaries” – each contains the involved statement texts and
the responses given to each (“agreement with” or “disagreement with”), along with a link
to the tension explanation (if one exists), and a link to resolve the tension (which simply
points to the appropriate Tension view – see section 6.2.4 above).

6.2.7 Summaries

The Summary view, also called the “Done” view, is generated by manager/done.php and
uses the manager/templates/done.html template. Its job is to inform the user that the
topic is completed and to present him or her with the responses that were given. It has two
modes of operation – topic-specific and holistic.

In the topic-specific mode, only the responses to statements in the specific topic are
shown. The topic is determined first by a HTTP GET topic id variable and then, if one
is not provided, by the HTTP worldview topic id cookie. If neither exist, the system
switches to holistic mode. In topic-specific mode, the system checks if there were responses
to a statement in a different topic, and if so, provides a link to the holistic mode.

In holistic mode, a summary of every response that was made “this session” (that is, by
the current user ID), is shown. If the worldview topic id cookie is nonzero, a link to the
topic-specific mode for that topic is provided.

In both modes, a link back to the topics page is displayed at the top of the page. Also,
if there are any deferred tensions, a link to the Deferred tensions view is provided in bold,
red font.

The actual summaries are generated as a table. Each statement text is shown next to a
graphic representation of the response (generated by tiling images in manager/media/images/

done summary) and a textual representation of the response.

6.2.8 Comments

The Comment view is a special view that is embedded in other views – specifically in the
Topic, Statement, and Tension views. Comments are simple ways for users to communicate
their thoughts and objections to the data on the relevant pages. Comments are handled
by the manager/post comment.php program, which accepts comment text via HTTP POST,
saves them to the database, and, depending on whether the ajax variable was set to true in
the data stream, either prints the comment encoded in HTML (which is then displayed on
the page via AJAX through a small Javascript program in manager/media/js/comment.js)
or redirects back to the target area which, when printed, calls the make comment area()

function which uses the manager/templates/comments/comment.html template to display
all of the comments written on a page.

Besides the comment text, comments provide an opportunity for a user to enter a name,
which is then associated with the user ID in the database and presented automatically in

20

all comment forms for that user ID. The comment template displays the name of the poster
before each comment – the name in the database if one exists, and “Anonymous” otherwise.

6.2.9 Other views

The program has a number of other views which are essentially static pages – they use a
single template (except the generic templates which all pages use), and a PHP script that
loads and prints the template. This is done instead of serving a static HTML file specifically
so that generic header and footer templates could be used, maintaining a consistent look
throughout the website.

6.3 The .htaccess file

Worldview Manager is hosted on an Apache web server and is configured using an Apache
.htaccess file. Some of it is needed due to quirks on the system that our implementation is
hosted on. Specifically, we explicitly denote .php files as php5-script because the default on
our server is php4-script and we use features specific to PHP 5. Also, we explicitly enable
Magic Quotes via the “php value magic quotes gpc On” directive because the system uses
the PHP function stripslashes() to bypass its effects instead (the motivation for this is
to accomodate systems where disabling Magic Quotes is impossible).

The majority of the file, however, is a collection of URL rewriting rules using mod rewrite

that together create readable semantic URLs for Worldview Manager. We generally have
the following policy:

• Ignore case in all URLs (via the [nocase] flag).

• Ignore trailing slashes in all URLs (via the /? regular expression).

• Allow backward compatibility for all PHP scripts (via a regular expression that redi-
rects to the script).

Please see the actual file (located in manager/.htaccess) for more on exactly which
rewriting rules are used.

6.4 Administration pages

There are a number of administration pages that come with Worldview Manager. They are
not intended to be accessible to users and therefore should be password-protected on a public
server. However, if Worldview Manager were to be extended to include user accounts, much
of their functionality could be ported for the purpose.

21

6.4.1 Topic Manager

The primary feature of the administration pages is to act as a front-end to the compiler
suite (see section 7 below). Specifically, the file manager/admin/topic manager.php, which
uses the manager/templates/admin/topic manager.html template generates a list of the
current topics with a “delete” link next to each one, and provides a simple web-based interface
to upload another topic file (see the “Topic files” section below).

6.4.2 Statistics

Another page not intended for users is the Statistics view. The file responsible for it is
manager/admin/statistics.php, but, like all other views, many functions from the frame-
work are used. Unlike other views, there is no Statistics template – the generic header and
footer templates are loaded but the rest of the code is generated and printed directly. The
reason for this is that due to the potentially large amount of data to print, the page is likely
to load slower than other pages, and this method prints data on the screen as it is generated.

The view has two main features. The first is tension suggestions: if the system notices
unusually large correlations in responses (e.g. the vast majority of people who answered
negatively to statement a also answered positively to statement b, but there is no explicit
tension in the database between a and b), the system will display this in another table.
The second feature is a summary of every statement – a table with statement ID, statement
text, the percentage of negative, neutral, and positive responses, and the total number of
respondents is printed.

7 Compiler suite

The Worldview Manager framework provides a flexible and rich means to manipulate the
database and extract data from it; meanwhile the website provides a usable and clean in-
terface for the user. However, as it stands, there is no easy method to actually populate the
database – there is a specification for what data in the database should look like (see section
4) but no specification about how the data should be placed there.

In a sense, this is intentional, because it means that Worldview Manager can be fairly
seamlessly paired with other projects, including data inference systems and other information
databases. However, we believe that even a prototype would not be complete without some
means to upload topic files and tensions (beyond directly adding data through some MySQL
client). Hence, the “Topic file compiler suite”.

7.1 Topic files

Topic files are, as the name implies, files that contain the contents of a Worldview Manager
topic – that is, a list of statements and a list of tensions between them. The former is done
via a simple list of “statement declarations” and the latter via a fairly robust system of
“implications”. There is also support for comments.

22

Topic files do not contain the topic name or topic description. These are passed as
arguments to mktopic (see sections 7.3 and 6.4).

The files are written in a plain-text format. Since the text can get somewhat dense,
however, we have found it useful to use some sort of specialized editor. Therefore, we have
provided wvm-mode.el, an Emacs major mode for Worldview Manager topic files.

The topic file structure is arguably the biggest bottle-neck to having cross-topic tensions,
because there is currently no way to reference statements defined in one topic file from
another. Thus, if the compiler suite is not used, and the database is populated with cross-
topic tensions in some other way, the system should work fine.

An example topic file is located in topics/testFile.wvm.

7.1.1 Statement declarations

Any line that begins witha block of only alphanumeric/underscore characters (ignoring
whitespace) is interpreted as a statement declaration. That first block is known as the
“statement identifier” and the rest of the line after the first block of whitespace after the
identifier is treated as the “statement text”. The statement ID (that is, the numerical iden-
tifier for statements as stated in the database) is not in any way encoded in the topic file.
It is generated by MySQL and handled by mktopic (see section 7.3).

7.1.2 Implications

Worldview Manager works with tensions as tuples of statements and response directions.
Consider, as an example, two statements with the identifiers FOO and BAR (see section 7.1.1
above for more on statement identifiers; identifiers are stored in the database but not used
for anything but the concepts described in this section). If agreeing with FOO and disagreeing
with BAR was logically inconsistent, the system would have to be told this as the tuple (FOO
+ BAR -) (this is in the spirit of, but not quite how the database actually stores tensions.
For that, see section 4, specifically the tensions bullet). This is somewhat awkward for
a human to think about – it is much more intuitive to say “FOO implies BAR” than to say
“Agreeing with FOO and disagreeing with BAR is a logical contradiction”.

Therefore, rather than storing tensions directly, we store implications. All tensions are
written in parentheses. Any line that begins with an open-parenthesis (again, ignoring
initial whitespace) is treated as an implication. Statements are referenced by the statement
identifiers given in statement declarations (see section 7.1.1) and the actual implications
using standard logic notation symbols:

• “=>”, “==>”, “->”, “-->”, or “IMPLIES” for implications

• “<=”, “<==”, “<-”, “<--”, or “IF” for reverse implications

• “<=>”, “<==>”, “<->”, “<-->”, or “IFF” for equivalencies

• “&”, “/\”, or “AND” for conjunctions

23

• “|”, “\/” or “OR” for disjunctions

• “^” or “XOR” for exclusive-or

• “!” or “NOT” for negation

Note that the word forms of all logical operators are case-insensitive.
The system also supports parentheses for grouping but in most cases, this is not necessary

because grouping operators (conjunctions, disjunctions, exclusive-or) take precedence over
relations (implications, reverse implications, equivalencies). The main exception to this is
that the “NOT” keyword requires grouping. Thus, to write that agreeing with both FOO and
BAR is logically inconsistent, we would write “(FOO IMPLIES NOT(BAR))”. This does not
apply to the “!” symbol, so the same could be written as “(FOO IMPLIES !BAR)” or “(FOO
=> !BAR)” (word and symbol notation can be mixed arbitrarily).

Note also that the relation operators (implications, reverse implications, equivalencies)
can generally be used on other arbitary statements. So lines such as “(FOO => (BAR <=>

BAZ))”, “(!(FOO => BAR))”, etc. are perfectly valid and have the expected meanings.
After the final close-parenthesis, there can be an optional tension explanation. It must

be separated by at least one whitespace character from the close-parenthesis, after which
everything to the end of the line is written as the tension explanation. Note, however,
that some constructs are effectively short-hand; for instance, writing “(A | B => !C)” will
actually be expanded internally as two separate tensions – “(A + C +)” and “(B + C +)”.
The tension explanation given to the short-hand logical notation will be copied to both,
which may not be the intended effect. Please remember this when using grouping symbols
and writing tension explanations.

7.1.3 Comments

The system supports “comments” in topic files. These are ignored by the system but can be
useful for remarks and explanations for people reading the topic file. Comments begin with
“// ” (two comments followed by at least one whitespace character) and end at the end of a
line. Comments take precedence before everything else, so if “// ” is seen anywhere in a line,
the rest of the line starting from the “// ” will be ignored. Please note that the whitespace
character (which doesn’t need to be a space, and can be a TAB character, etc.) must be
present; this is to allow links in tension explanations (or else everything after http:// would
be interpreted as a comment).

7.1.4 wvm-mode.el

Topic files are written and encoded as plain text files, but it can be useful to have a specific
editor for them. In lieu of this, we provide an Emacs major mode – wvm-mode.el, located
in topic file parsers/wvm-mode.el. When loaded, the mode associates all files ending
in .wvm with itself. It treats statement identifiers as functions (colors them blue and prints
them in bold font, by default) when used in the beginning of statement declarations, and

24

treats them as keywords (colors them orange, by default) when used in implication lines.
Comments are written in the comment font (red, by default). Logical operators – both in
symbolic and (capital-case only) word form – are treated as keywords (cyan and bold, by
default).

Note that, due to a glitch in the Emacs mode system, comments are resolved after
everything else, so if a comment contains parentheses or any keyword, it will not be colored
as a comment. Similarly, if the statement text contains any symbol or text in parentheses,
they will be colored as described above. For this reason, wvm-mode.el only recognizes
the word form of logical operators when written in all uppercase. If they are not written
in uppercase, they will not be colored, though the rest of the system will interpret and
understand them perfectly.

7.2 WVMPreprocessor

WVMPreprocessor is charged with the following tasks, which are undertaken roughly in the
order indicated.

1. Eliminate comments and other formatting-only components of the topic file.

2. Parse potentially intermixed statements and tensions, including parsing the logical
expression for each tension

3. Report a warning for apparent typos (statements referenced only once that lack an
explanation) and for boring statements (statements with no tensions referring to them).

4. Process LATEX code in statement and tension explanations, replacing it with HTML
when possible and images otherwise.

5. Infer new tensions of length up to 4, constructing readable composite explanations.

6. Eliminate duplicate tensions, or tensions for which a strict subset of the conditions
also form a tension.

7. Output a new tension file.

At each step, WVMPreprocessor may also encounter errors or warnings which should
be passed in a reasonable way along to PHP. Design decisions and algorithm outlines are
presented below.

7.2.1 Parsing

The processing begins by eliminating spaces at the beginning of lines, and any part of a
line that occurs after the string “//” followed by a space character. (This allows the use of
http:// in HTML, for instance.) 12

12All parsing is done using the Haskell Parsec library. For details, see
http://hackage.haskell.org/package/parsec.

25

The next nontrivial piece of the program is identifying statements and tensions. The
problem of intermixed statements and tensions is eliminated by keeping the collections of
statements and of tensions totally separate until after parsing is complete, and by adding a
simple alternative. The processing is done on an specialized error monad transformer, holding
an error type designed to handle the specific errors errors encountered by WVMPreprocessor,
wrapping a Parser that maintains in its state

1. A Map from Strings to Strings, here used to match statement identifiers to their
explanation.

2. An Expression. Expressions hold an entire Boolean expression and explanations
for each component, and are generally described and defined in section 7.2.4. This
Expression is a necessary condition for a set of responses to be considered noncontra-
dictory, and will later be assumed sufficient.

This tuple is held in a datatype designated TopicFile.
Statements are recognized by the beginning of a line with a variable, which is restricted

to a string formed of alphanumeric characters and underscores. After the variable comes at
least one but possibly more space characters – tabs and spaces, but no newlines – and the
remainder of the line becomes the statement explanation. Since we have already eliminated
spaces on both ends of each line, as well as any comments, this suffices. If a statement
is successfully parsed, the TopicFile is updated with the new statement. Note: If two *
lines with the same statement ID are parsed, the explanations are concatenated. This allows
multi-line statement explanations to be handled naturally.

Tensions are recognized by a Boolean expression in parentheses, followed by any number
of spaces (possibly zero) and an explanation. The parsing of Boolean expressions is discussed
in section 7.2.3, and the explanation is assumed to continue until the end of the line. In
particular, the full meaning of the Boolean expression is parsed and then that expression
is tagged with the specified explanation. Note: If the expression has arity greater than *
MAX ARITY, a warning is returned and the tension is ignored. Otherwise, if the previous
Expression held X, and x was parsed from this tension, then x ∧ X becomes the new
Expression. Note: that the Boolean expressions in the original topic file should express *
positive statements about a consistent set of responses.

7.2.2 Statement/tension processing

After this point, we check for missing or boring statements. A missing statement is referred to
by at most one tension but no explanation for this statement was given; in this case, it seems
likely that this reference was in fact a typo. A boring statement was given an explanation but
did not appear in any tensions. If either type of statement exists, an appropriate warning
message is returned but the processing continues.

Next, we process LATEX in statement and tension explanations. We compile a list of
all LATEXsnippets in the topic file, including both statement and tension explanations. As
part of this process, we do some significant parsing of the LATEX, in particular identifying

26

commands and giving them an empty argument set if no arguments were previously given.
We then separate each snippet by spaces and collect a list of distinct LATEX pieces. All of
this extra work is done with the objective of minimizing the number of distinct pieces of
TEX to be compiled, because texvc, MediaWiki’s TEX-to-HTML converter, is painfully slow.
After compiling the full list, we export that list into vcrunner, a small bash script that
runs texvc on each piece of code with the appropriate parameters. We assemble the output
of vcrunner into a mapping between TEX words and compiled HTML. Finally, we take a
second pass through statement and tension explanations, replacing any TEX with the HTML
code. Note: if your topic file is taking too long to compile, you may have TEX code that *
should have more spaces separating distinct pieces.

After resolving and simplifying tensions (covered in (7.2.4)), we check for contradictions.
Any clause of the form x, ¬x, or a vacuous clause (implying False) is considered a con-
tradiction, as the spirit of Worldview Manager is not to dictate responses to any user. A
contradictory clause is handled with a warning.

Finally, we display the compiled topic file. Statements are reproduced in lexicographical
order of their identifier, followed by tensions. The details of how tensions are shown are
covered in (7.2.4).

7.2.3 Boolean expression parsing

An expression can be any of the following, in descending order of precedence. Let p, q be
factors, to be defined later. (All binary operators are infix.)

• p ∧ q. Valid conjunction symbols include “&”, “and”, and “/\”

• p ∨ q. Valid disjunction symbols include “|”, “or”, and “\/”.

• p⇒ q. Valid implication symbols include “=>”, “==>”, “->”, “-->”, and “implies”.

• p⇔ q. Valid equivalence symbols include “<=>”, “<==>”, “<->”, “<-->”, and “iff”.

• p ⇔ ¬q. Valid exclusive-or symbols include “^” and “xor”. (Parsing this is consider-
ably more efficient than parsing p⇔ ¬q.)

• p⇐ q. Valid reverse-implication symbols include “<=”, “<==”, “<-”, “<--”, and “if”.

• p.

A factor is defined as follows:

• Parentheses around an expression.

• The negation of a factor. This can be “!” followed by a factor with optional spaces,
“not p” where p is a factor, or “not(p)” where p is a factor.

• A variable, which must take the form of a statement identifier – composed of alphanu-
merics and underscores.

27

7.2.4 Boolean expression manipulation

Expression manipulation is done in the module CNFExpression, so named because it en-
capsulates the manipulation of expressions held internally in conjunctive normal form. In
particular, a clause – a collection of assignments from variables to values, at least one of
which must be true – is held in a simple Map String Bool, and an expression is held as
merely a list of clauses, which are intuitively being ∧’d together. In this context, computing
X ∧ Y is as simple as list concatenation; X ∨ Y becomes

X ∨ Y =
∧

x∈X,y∈Y
¬taut(x∨y)

x ∨ y

where taut(x ∨ y) indicates whether or not x ∨ y is a tautology, which is true if and only if
x is satisfied by l and y is satisfied by ¬l for some literal l.
¬X is computed by noticing that if every literal l is replaced by ¬l, we essentially get

the negation of X in disjunctive normal form. This is as simple as replacing each value in
a clause with its negation, treating the entire expression as if it were in disjunctive normal
form, and then converting it back.

These three operations are sufficient to parse a Boolean expression. Now, we can get into
the fun part: the resolution algorithm. Here are some definitions:

type LogicClause = Map String Bool -- maps variables to assignments

-- any one of these assignments would

-- satisfy the clause

type Clause = (LogicClause, Explanation)

type Literal = (String, Bool)

The resolution engine is probably the most algorithmically sophisticated piece of the
preprocessor. It tracks the following:

• Seq Clause: a queue of clauses waiting to be resolved into the overall expression.

• Map LogicClause Explanation: a mapping associating each distinct logical clause to
its explanation, ensuring that no duplication of clauses is permitted. The conjunction
of these clauses is the current value of the expression.

• Map Literal (Set LogicClause): the critical piece of the resolution engine, this
maps variable assignments to every clause that would be satisfied by that assignment.

Consider now the task of resolveClause: given a clause C and an explanation, return
all resolutions of this clause with the current value of the expression. In particular, given a
clause

C = ∨ili

where each li is either a vj or a ¬vj, we seek clauses in the main expression of the form

C ′ =
∨
j

l′j ∨ ¬lk

28

for some k, because then C ∧ C ′ implies ∨
i 6=k

li ∨
∨
j

l′j

Of course, if any of the li are negations of any of the l′j, this statement is trivially true,
and therefore useless to us. We therefore seek clauses which contain exactly one ¬lk.

The key to the algorithm is that the Map Literal (Set LogicClause) tells us exactly
which clauses contain each literal, so:

1. For each literal (association pair) in our original clause, we look up the negation of
that literal to get a Set LogicClause. (We now have a list of these Sets, perhaps one
per literal.) Let the set associated with ¬li be Si.

2. From each Si, construct a Map with the associations {(C ′, [vi]) | C ′ ∈ Si}. That is, we
map each clause C ′ from Si to the singleton list of the variable of li, a variable on which
C ′ differs from C. (Note also that for each variable v of difference with any given C ′,
there is a Map associating C ′ to [v].)

3. We take the union of all these maps, combining values with list concatenation. We
now have a Map associating each C ′ in our original expression to a list of all variables
on which it differs from C.

4. Now, the clauses we can resolve with are exactly the clauses mapping to a list of a
single element, which is the name of the variable v we want to unify on! For each C ′

mapping to only a single variable v, we may simply take the union of these two logical
clauses (literally a Map.union) and delete the assignment corresponding to v.

5. In addition, we must combine their explanations. Combination of explanations is done
according to the following heuristic: if li = vj, that is, it makes a positive assignment
to a variable, then the explanation for C precedes the explanation for C ′, otherwise
the explanations are reversed.

The final piece to the algorithm is relatively simply implemented: the simplification
algorithm, whose objective is simply to test for clauses that imply one another. Implication
is handled almost trivially by the function isSubmapOf. If one map is a submap of another
map, the first map is an implication of the second (since the second is more general).

7.2.5 Files

WVMPreprocessor is located in topic file parsers/WVMPreprocessor/. This directory
contains both source and binary files of the program, as well as a file called buildWVM, which
can be used to easily compile the program, and a file called vcrunner which is used by the
program to run texvc.

29

7.3 mktopic

WVMPreprocessor (see section 7.2 above) takes a topic file (see section 7.1) and generates it
into a much more verbose syntax. It is the job of mktopic to take this newly generated data
and, as the name implies, “make it into a topic”, that is, upload it to the MySQL database.
This is a three-part operation – insert the new entry into the topics table, insert the new
statements into the statements table, and insert the new tensions into the tensions table
(see section 4 for more on the database structure).

Furthermore, note that the data that WVMPreprocessor generates does not include any-
thing about statement IDs because there has not yet been any interaction with MySQL –
thus, it is also the job of mktopic to remember the numeric statement IDs that MySQL
associates with each statement and, when uploading tensions, translate the identifers into
these statement IDs.

mktopic is written in Scheme and compiled using the Bigloo compiler. It must be
called with several command-line arguments in the following fashion:“mktopic topic-name

topic-description data-file”.
Descriptions of design decisions follow:

7.3.1 Reading data

The program needs to be launched with three command-line arguments (excluding the call
to mktopic itself. The first argument should be the name of the file (presumably generated
by WVMPreprocessor), which is read via a function called with call-with-input-filename.
This produces a list of lines, which are first parsed (see section 7.3.2) and then uploaded to
the database (see section 7.3.3).

7.3.2 Parsing data

Each line in the list is parsed either as statement or tension, depending on whether or not
it begins with a “(”.

When parsing a line as a statement, the program uses a simple regular expression to
extract the statement identifier (statement-id) and statement text (statement-text) por-
tions of the statement . All apostrophes in statement-text are escaped with a backslash
(this is to prevent SQL injection), and the pair is added to the associative list statements.

When parsing a line as a tension, the program works in several steps: First, it extracts
tension-definition (the parentheses and everything between them) and tension-text.
Next, the tension information is read as an s-expression (this is done via reading the result
of calling open-input-string on tension-text). Finally, the result is added as an entry
to the associative list tensions.

7.3.3 Uploading to the database

Due to a lack of a portable SQL library for Scheme, mktopic instead calls mysql directly. It
does this once, giving it one large file with a series of MySQL commands.

30

The difficulty with doing this is caused by the fact that the tensions given to mktopic

use “statement identifiers” while the database stores numerical statement IDs. In order to
bypass this problem, mktopic creates a local SQL variable for each statement, with the
name @$IDENT (where IDENT is the statement identifier). After all the statements are thus
added, tensions are added in the expected way, with the only caveat being that apostrophes
in tension explanations are escaped at this stage.

The entire script is then loaded to MySQL. This stage of the process is responsible, also,
for reading relevant configuration files (and coming up with reasonable default values) for
the database.

7.3.4 Files

mktopic is located in topic file parsers/mktopic/. It comes only with source code. It
was tested using Bigloo version 3.2a13 but should be reasonably simple to port to another
Scheme implementation.

13See http://www-sop.inria.fr/mimosa/fp/Bigloo/.

31

A API

Worldview Manager contains a framework that provides a number of functions for develop-
ers who wish to create their own websites and programs that use the Worldview Manager
database. This API contains all the functions intended for this use, along with the arguments
they take, what they return, and, in some cases, how they work. Please note that not every
function that is defined in the source files are here – some are helper functions intended only
for internal use, and they are not listed here.

A.1 Database querying Library

Please see section 5.2 for more information on the general goals and scope of the database
library. All of the functions are in various files in the directory manager/lib/db/query/,
which are all included by the file manager/lib/db/query/query.php.

A.1.1 Topics

These functions are defined in manager/lib/db/query/query topic.php

topic detail($tid) Takes a topic ID and returns the corresponding topic name and text.

delete topic($tid) Takes a topic ID and deletes all database entries for the topic, state-
ments and tensions in the topic, responses to statements in the topic, and comments
on the topic and statements and tensions in the topic.

get all topics() Returns an array of associative arrays, where each associative array has
the topic id, topic name, and topic text of a topic.

topic id by name($topic name) Returns the topic ID with the given name, if one exists.

A.1.2 Statements

These functions are defined in manager/lib/db/query/query statements.php.

statement detail($sid) Returns a query with at most one row, containing the statement
text and topic id associated with the given statement.

statement details($sids) Takes an array of SIDs, and returns a query returning SIDs,
statement texts, and topic ids.

statement ident detail($tid, $ident) Takes a topic ID and a short statement identi-
fier, and returns the statement ID and statement text associated.

pick statement($uid, $topic id) returns a query returning at most one statement ID to
ask the user about, subject to the following constraints:

32

• Only returns statements with the specified topic ID.

• No statement that has already been responded to is allowed.

• Minimizes the number of tensions with statements already responded to.

• Maximizes the number of tensions relating to this statement.

Any ties after these ordering constraints are broken randomly.

A.1.3 Tensions

These functions are defined in manager/lib/db/query/query tensions.php.

get tension text($tension id) Given a valid tension, produces a public-HTML version of
that tension explanation. In particular, this involves passing it to handle explanation,
which identifies every distinct statement referred to in the tension explanation, labels
it with letters, and produces fully formatted explanations.

find disagreements($uid, $topic id) Given a user ID and a topic, finds any disagree-
ments between the user’s responses. This is pretty much the most crucial function in
Worldview Manager. A disagreement is defined as when the user expressly violates the
logical implications set forth in the topic file. The extent of a disagreement depends
on how many statements are involved. Each statement’s disagreement level is scored

according to the formula va/
√
|v| where v is the user’s agreement with the statement,

scaled between −1 and 1, and a is 1 if the response isn’t supposed to be positive and
−1 otherwise. The sum of these scores for each statement involved in a tension yields
the overall tension score on that tension. The threshold for the total score needed
to create a disagreement, depending on the number of statements involved, is held in
the array $TOLERANCES, which currently has a minimum of 1.25 for a two-statement
tension, 2.2 for a three-statement tension, and 3.1 for a four-statement tension.

defer tension($uid, $tension id) Defers the specified tension for later consideration.

deferred tensions($uid) Returns a query listing tension ids deferred by this user.

hit tensions($uid, $sids) Given a user ID and an array of statement IDs, returns any
deferred tensions related to those statement IDs.

alleviate tensions($uid, $topic id) Deletes any deferred tensions from this user that
have since been resolved.

address tension($uid,$tension id) Deletes the specified tension from the deferred list.

address tensions with statements in topic($uid, $topic id) Deletes any tensions with
statements in the specified topic from the deferred list.

33

A.1.4 User/Sessions

These functions are defined in manager/lib/db/query/query user.php

get agreement($statement id) Looks at the global $USER ID variable and returns the
response the user has provided to the given $statement id (which will be 0 if the user
hasn’t responded to the statement yet).

report name($uid, $name) Associates the given user ID with the given name. There is no
return value.

get users responses($uid, $topic id=0) Returns all the responses that the current user
has provided. If the topic ID is not 0, it will only limit to responses in that topic.

get name($uid) Returns the name that is associated with the user ID, if any.

report response($uid, $responses) Takes a user ID and an associative array of re-
sponses, with the keys being statement IDs and the values being the response values
(from -1 to 1.

first response($user id, $topic id) Returns true if the user hasn’t responded to any
statements in the topic yet and false otherwise.

clear responses($uid) Removes all of the user’s responses to all topics and moves them
to responses history.

clear responses to topic($user id, $topic id) Removes all of the user’s responses to
the provided topic, and moves them to responses history.

topics done($uid) Returns an array of topic IDs of all topics completed by the user.

other responses($user id, $topic id) Returns true if there are responses left in the
given topic and false otherwise.

A.1.5 Comments

These functions are defined in manager/lib/db/query/query comments.php

comment on topic($user id, $topic id, $comment) Records the given comment text and
returns the new comment’s ID.

comment on statement($user id, $statement id, $comment) Records the given comment
text and returns the new comment’s ID.

comment on tension($user id, $tension id, $comment) Records the given comment text
and returns the new comment’s ID.

34

get comments on topic($topic id) Returns an array of associative arrays, where each as-
sociative array has a key for the comment ID, comment text, and user ID of the
commenter.

get comments on statement($statement id) Returns an array of associative arrays, where
each associative array has a key for the comment ID, comment text, and user ID of
the commenter.

get comments on tension($tension id) Returns an array of associative arrays, where each
associative array has a key for the comment ID, comment text, and user ID of the com-
menter.

get comments by user($user id) Returns an array of arrays of comment text, area, ID
that the given user made.

get comment by id($comment id) Returns an associative array corresponding to a com-
ment row with the given commment ID.

A.1.6 Statistics

These functions are defind in manager/lib/db/query/query statistics.php

get statements with agreements() Returns a list of statement IDs, text, and relative
responses for every statement in the database.

suggest tensions() Returns an array of arrays of statement/agreement pairs, along with
their percentages and total agreements.

A.2 Data passing library

Please see section 5.3 for more information on the general goals and scope of the data passing
library. All of the functions are in various files in the directory manager/lib/data passing/,
which are all included by the file manager/lib/data passing/data passing.php.

A.2.1 Topics

These functions are defined in manager/lib/data passing/data passing topic.php.

get topic() Checks that the HTTP GET topic id variable is set and is a numeric value;
if it is not, returns false. Otherwise, if the value is 0, the function returns the
array (0, "", ""), and if it is nonzero, it passes the data to the topic detail()

function as defined in the Database querying library (see section A.1); if it gets back a
topic name and description, it returns them in the array ($topic id, $topic name,

$topic text), otherwise, it returns false.

35

get done topic() Checks that the HTTP GET done topic variable is set and is a numeric
value. If so, it returns the value, and otherwise returns false.

send topic($topic id) Converts $topic id to intval($topic id) (which, in the intended
use of the function, doesn’t make any change, but prevents dangerous input), and re-
turns the string “/worldview/topics/$topic id”.

send done topic($topic id) Converts $topic id to intval($topic id) (which, in the
intended use of the function, doesn’t make any change, but prevents dangerous input),
and returns the string “/worldview/done topic.php?topic id=$topic id”.

A.2.2 Statements

These functions are defined in manager/lib/data passing/data passing statement.php.

get statements() Goes through the variables in HTTP GET and builds an associative array
from them. For every key/value pair where both key and value are numeric, the
function adds them to the array (the intention being that the key is the statement ID
and the value is the response). Also, if the GET variable tension id is set, the key
“tension id” is associated with “intval($ GET["tension id"])”. The associative
array is then returned (empty if nothing was added to it).

send statements($statements) The function operates on an associative array stored in
$statements. If the array contains only one pair, the function creates a variable
$suffix = intval($key) and returns the string “/worldview/statements/$suffix”.
Otherwise, the variable $tension id = intval($statements["tension id"]) is cre-
ated and $statements["tension id"] is subsequently unset. The function then re-
turns “"/worldview/tensions/$tension id/" . http build query($statements)”.

A.2.3 Tensions

These functions are defined in manager/lib/data passing/data passing tension.php.

get responses() Builds and returns an array of arrays, where each element array contains
a response ID from HTTP POST (response1, response2, . . .), and a “response” (either
1, 0, or -1).

get tension string() Builds an associative array $strings to which every numeric HTTP
GET variable with a numeric value is added. The function then returns
“http build query($strings)”.

get tension() Checks that the HTTP GET variable tension id is set and is numeric. If it is
not, returns false; otherwise the function runs get tension text() on the tension ID;
if the call successfully returns the tension text, the function returns array($tension id,

$tension text); otherwise, it returns false.

36

send tension($tension id) Sets $tension id = intval($tension id) and returns
“"/worldview/tension.php?" . http build query("tension id" => $tension id)”.

send defer tension($tension id) Sets $tension id = intval($tension id) and returns
the string “/worldview/tensions/defer/$tension id”.

send deferred tension($tension id) Sets $tension id = intval($tension id) and re-
turns the string “/worldview/tensions/defer/$tension id/show”.

A.2.4 Comments

This function is defined in manager/lib/data passing/data passing comment.php.

get comment() Checks that the HTTP POST variables page, id, and comment text are set,
that id is numeric, and that page is set either to “topic”, “statement”, or “tension”.
If any of this is not true, the function returns false. Otherwise, the function creates
another variable $name that is assigned to equal the HTTP POST variable name if it is
set, or to the empty string otherwise. Similarly, the variable $url extra is assigned
to equal the HTTP POST variable url extra if it is set, or to the empty string other-
wise. The function then returns array($page, $id, $comment text, $url extra,

$name).

A.2.5 Statistics

This function is defined in manager/lib/data passing/data passing statistics.php.

get statistics() Checks that the HTTP GET variables page and id are set, that id is
numeric, and that page is set either to “topic” or to “statement”. If any of this is
not true, the function returns false; otherwise, it returns array($page, $id).

A.2.6 Utilities

These functions are defined in manager/lib/data passing/data passing util.php.

redirect($addr) Returns “header("Location: $addr")”.

make deferrals() Checks to see if the HTTP GET variables action and tension id are set
and that action is set to “defer”. If all of this is true, the function sets $tension id

= intval($ GET["tension id"]), imports the global variable $USER ID (see section
5.1), and runs defer tension($USER ID, $tension id). This function, therefore,
has a side-effect.

A.3 Miscellaneous Functions

These are some of the miscellaneous functions provided by the Worldview Manager frame-
work. Please see section 5.4 for more information about the framework’s miscellaneous
features. The functions are defined in manager/lib/.

37

A.3.1 Navbar

This function is defined in manager/lib/util.php. Please see section 5.4.2 for more infor-
mation about the navbar.

navbar($page) Returns the HTML code for a navigation bar. There are two hardcoded
associative arrays – $urls, which matches PHP files to semantic URLs, and $pages,
which matches semantic URLs to the text of the corresponding link. $page is set
to $urls[$page] (which might be an unset value), and then checked against each
key of $pages. If one matches, then the link in the navbar gets the extra HTML
‘class="curr"’, which allows the “current” page to be styled differently. The resulting
HTML (which is in the form of a list) is then returned.

A.3.2 Loc

These functions and class are defined in manager/lib/loc.php. Please see section 5.4.2 for
more information about Loc.

PathElement($text, $span special=false, $link=false) This class’ constructor takes
some text, extra HTML code that goes inside the <span...> tag, and a link. All but the
$text is optional. The constructor creates two member variables, text, which simply
contains the $text passed to the constructor, and html, which contains an HTML snip-
pet of the form ̈$text, where
$span special is set to the empty string if it was passed as false to the constructor.

make path($ending) Takes either an array of PathElements or a single PathElement. Re-
turns array($root, $separator, $ending interspersed with separator), with

• $root = PathElement("Worldview Manager", false, "/worldview/home")

• $separator = PathElement("»", ‘class="separator"’, false)

• $ending interspersed with separator is $ending with $separator between
every two elements (or simply $ending if there was only one element).

make title($path) Takes the array returned by make path() and returns a string made
up of concatenated text member variables of the PathElements in the array.

make loc($path) Takes the array returned by make path() and returns a string made up
of concatenated html member variables of the PathElements in the array.

A.3.3 Templates

This class is defined in manager/lib/templates.php. Please see section 5.4.1 for more
information about templates.

38

Page($template, $tags) This class’ constructor takes a template file (relative to
manager/templates/) and an associative array with the template’s variable names
and the corresponding values. Once an instance of the class is initialized, the contents
of the HTML generated is in the output member variable.

These functions are defined in manager/lib/util.php.

header template($title, $loc, $page=false) Constructs a Page class (see above) with
the header template (as defined inmanager/templates/generic/header.html) as the
template file, and with the title variable set to $title, the navbar variable set
to navbar($navbar) (see section A.3.1 above for more on the navbar) and the loc

variable set to $loc (see section A.3.2 above for more on Loc). The output member
variable of the resulting object is returned.

footer template() Constructs a Page class (see above) with the footer template (as defined
in manager/templates/generic/footer.html) as the template file. There are no
variables in this template. The output member variable of the resulting object is
returned.

A.3.4 Comments

These functions are defined in manager/lib/util.php. Please see section 6.2.8 for more
information about comments.

make comment area($page, $id, $name, $url extra="") Prints to the comment form tem-
plate as defined in manager/templates/comment/comment.html. $page must be one
of “topic”, “statement”, or “tension”. The function obtains the comments posted
on the relevant $page by passing intval($id) to the corresponding function from
the database querying library (see section A.1) – either get comments on topic(),
get comments on statement(), or get comments on tension(). For each comment,
it runs encode comment() on the comment, and creates a string $encoded comments,
which consists of the encoded comments concatenated onto each other. The amount
of comments is extracted and formatted in an English sentence, and all the variables
are passed onto the template.

encode comment($comment, $num=0) Prints to the comment template as defined in
manager/templates/comment/encoded comment.html. All data is taken from $comment

and $num.

A.3.5 Cookies

These functions are defined in manager/lib/usercookie.php. Please see section 6.1 for
more information about sessions and cookies.

39

delete cookie() Sets each cookie (as described in section 6.1) to the empty string and sets
their expiration date to "1", causing them to be deleted.

set topic id cookie($topic id) Sets worldview topic id (as described in section 6.1)
to $topic id with an expiration date of a day from the time the function is run.

A.3.6 Tension explanations

This function is defined in manager/lib/explanation parser.php. Please see section 6.2.5
for more information about tension explanations.

handle explanation($topic, $explanation) Accepts a topic ID and an explanation, which
must be valid XML (though in practice, it’s just HTML with an extra tag) with the
following important caveats:

• There is no <?xml> tag, <!DOCTYPE>, or root tag. The root tag
<explanation></explanation> is appended by the function.

• There is no limit to character entities. Anything matching the regular expres-
sion /&([a-z0-9]+);/i (which is the form of character entities) is replaced by
<entity>$1</entity>, where $1 is the first match of the regex (that is, the data
between the amperand and the semicolon). On printing, the function converts
these back to character element format and hands them off to the browser to
parse.

The function generates a “tension explanation” from the data in the database. Specif-
ically, its main job is to expand and format the <stext> tags that are generated by
WVMPreprocessor.

40

B Changing the Maximum Tension Arity

The process of changing the maximum tension arity (that is, the maximum number of
statements that can be involved in a tension) is, unfortunately, not trivial. Worldview
Manager is composed of many different components, all of which have their own quirks and
requirements. It is the intention of this appendix to explain the process in detail. For best
results, the reader is encouraged to follow the instructions in this appendix in the order in
which they are presented.

B.1 MySQL

The relational database model is not well-designed to variable amounts of data. Therefore,
the first step of adding extra tension arity is to alter the MySQL tensions table by adding
two columns for each extra level of arity desired. For instance, to add a fifth level of arity,
create a column called statement 5 of type “INT” and a column called agreement 5 of type
“tinyint”. Do not set either to be “NOT NULL”, since most tensions will not have that high
a level of arity.

B.2 Configuration file

The file conf/max arity is meant to contain a single numerical value, which is the maximum
arity. Much of the PHP website (see below) reads from this file. The first line of the file
should contain just the number of the arity. Do not add extra whitespace, etc. characters
at the end. All subsequent lines of the file are ignored. All programs that are unable to
properly read the arity from the file default to a value of 4.

B.3 PHP

The bulk of Worldview Manager is written in PHP. There are two relevant parts – the
framework and the website.

B.3.1 Framework

The framework is written without any arity hard-coded, relying entirely on the $MAX ARITY

global variable (see section 5.1). All relevant functions, particularly those in the database
passing library (see sections 5.2 and A.1) return all the data from the database up to the
relevant arity. For this reason, it is incredibly important that they are given the correct arity
(which is generally done by editing the configuration file – see section B.2) after editing the
database.

B.3.2 Website

Ostensibly, the website does not have any code that assumes any particular arity. Care has
been taken to ensure that all values taken from the framework functions are treated as if

41

they were of a dynamic size. The Tension view, in particular (see section 6.2.4), is generated
completely dynamically.

That said, since the website is the portion of the code that is most likely to be changed,
if any new code is written, the reader is encouraged to pay careful attention to assumptions
made about data returned by the framework – both in size and sometimes in contents.
Please especially read the API (appendix A) and take effort so that functions can operate
on a dynamically-sized amount of data.

B.4 Compiler suite

The compiler suite, like the PHP framework, attempts to act dynamically based on the
configuration file conf/max arity.

B.4.1 WVMPreprocessor

The WVMPreprocessor program reads the configuration file conf/max arity and generates
all tensions based from that, with a default value of 4 if reading from the file fails. However,
since one of its jobs is to make inferences about tensions, it also has a “local max arity”,
which is equal to the smaller of the value in the configuration file and the maximum arity
of any tension in a topic file that it is given. The program will limit all of its inferences to
local max arity.

B.4.2 mktopic

The mktopic program is, like the PHP framework, designed to act dynamically on the data
it is given. However, its job is somewhat more difficult because it is uploading to MySQL,
which only accepts a static amount of data. Thus, there is only one part of the program
where the maximum arity is explicitly defined. The program first attempts to obtain this
value via the configuration file (see section B.2). If it is unable to extract a value from the file,
it resorts to a default of 4. The value is stored in the variable *DATABASE-TENSION-LIMIT*

as defined in the beginning of topic file parsers/mktopic/database.scm.

42

