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Abstract. In the realm of analog evolvable hardware, the potential of a
coarse-grained, topological search approach which employs intrinsic test-
ing has been unexplored to date. Our evolvable hardware design platform
named GPIC (i.e. Genetic Programming of Intrinsic Circuits) is designed
for this approach which makes it suitable for adaptive, fault tolerant sys-
tem design as well as CAD flow applications. On a workstation GPIC
evolves circuit designs which are each intrinsically realized and tested
on a Commercial Off-The-Shelf (COTS) field programmable device, the
Anadigm AN221E04. This intrinsic approach provides speed over soft-
ware circuit simulators that employ computationally expensive models.
To interface with our COTS chip, we have implemented a resource man-
ager within GPIC and configure it via the vendor’s design GUI. For
circuit search and optimization GPIC uses a cyclic graph representa-
tion that explores the topological space of analog circuits. Each circuit
is represented using high level functional (i.e. coarse grained) analog
components, such as adders and amplifiers. For component value opti-
mization, GPIC uses particle swarm optimization. As demonstration of
the platform’s capabilities, we describe how GPIC has evolved a simple
controller for a linear, third order plant.

1 Introduction

We started specifying GPIC in October of 2004. We decided to investigate
whether it is possible to evolve circuits that can be designed efficiently and
in a routine manner. Very early in the project’s inception, we decided to focus
upon the domain of analog circuit design. Our decision stemmed from our recog-
nition of the ubiquity of natural analog processes. Furthermore, as [?], (p 1825)
states, “despite the trend to replace analog circuit functions with digital com-
putations, (e.g., digital signal processing in place of analog filtering), there are
some typical functions that will always remain analog” (emphasis from
[?]). Thus, analog design is here to stay. It is also apparent that analog design has
surrendered less to design automation than digital design. The analog domain is
populated by design gurus and libraries of reused designs that are tweaked. The
design flow has steps that are interdependent and too time consuming to allow
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humans to freely explore novel designs ([?]). We want to investigate whether
evolvable hardware approaches can contribute in a domain with this level of
complexity. The potential payoff is valuable in terms of generating better de-
signs that can be adopted by the industry and providing tools that allow the
analog flow to keep pace with its digital counterpart.

Since we have committed to using evolutionary search and optimization as
the primary means of deriving circuits, we have to select the means by which
candidate circuits are tested. As per Koza [, it is possible to employ a circuit
simulator such as Spice, [?]. However, as demonstrated in Koza’s work, Spice
simulations take a lot of time (because of their high fidelity models) and are so
narrow or specific that they have to be repeated for many test configurations
(e.g. corner conditions). As per McConaghey, [?], this may preclude the use of
such an approach to actually realize its evolved circuits. There are three alterna-
tives to Spice-like simulation: the use of symbolic analysis tools, simulation with
simpler, faster circuit models or intrinsic testing. Each method presents a trade-
off in speed and fidelity. Ultimately we would like GPIC to employ all of them.
Simpler models are fast but only go so far because they do not model higher
order aspects such as XXX. They are appropriate at an early design stage but as
flow progresses to sizing and validation they must be replaced. Symbolic anal-
ysis tools yield interpretability and might provide faster circuit evaluation than
Spice. It seems that the potential stemming from early work by [?] has not been
investigated to date. Complementary tools such as ISAAC and Donald ([?]) can
be used for circuit structure and sizing design. However, their integration into an
EHW system seems challenging as they have become commercial products. In-
stead, as a starting point, we selected intrinsic testing via a reconfigurable device
(in this case a chip). This choice is commensurate with our interest in adaptive,
robust evolutionary systems. Using a reconfigurable device allows us to investi-
gate the potential of the concepts around evolutionary self-repairing hardware.
We find the possibility that evolutionary algorithms could provide the benefits
of robust, more life-like systems because of their nature-inspired design process
very compelling. In addition, reconfigurable devices offer a definite advantage in
speed of circuit evaluation. We do recognize that using a reconfigurable device
raises issues concerning whether evolution can produce a useful general circuit.
Even if we do not exploit material silicon properties a la Thompson,[?], the
means by which a device is reconfigurable can bias the solutions evolved with it
as their substrate. Varun: insert here stuff on using COTS FPAA.

Choosing the granularity of GPIC’s circuit elements is another key decision.
An evolutionary algorithm must be provided with the right building blocks so
that it can find solutions without too much effort within the search space im-
plied by composition of these elements. It is an open question as to whether the
building blocks that humans use for circuit design embody fundamental design
principles that arise from the physical properties of circuits (i.e. voltage, current,
resistance) or whether they are simply human-fashioned abstractions that suit
human style cognition (which is biased toward modular, decomposable systems).
In the field of EHW, the circuit elements of each reported system reflect where
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their architects’ decided to weigh in on this question. The cost, availability and
control over the configuration process are also factors considered when granu-
larity is decided upon. In Section 77, we shall elaborate upon how our decision
process arrived at the selection of the Anadigm AN221E04 for GPIC. This is
a coarse grained device. Its building blocks are functional analog CAMs which
include adders, amplifiers, differentiators and integrators.

Like most powerful EHW systems, GPIC must evolve the topology of a cir-
cuit as well as parametric aspects of a given topology. GPIC is also required
to be sufficiently general to handle different reconfigurable devices. While the
particulars of a specific device ground the lowest level circuit building blocks
and constrain the available resources, in GPIC no assumptions about the de-
vice level blocks or resources are allowed in the evolutionary algorithm. Further,
practicality dictates that GPIC be produced with less than $5K of funding.

By combining the exploitation of coarse grained elements with intrinsic test-
ing, we think GPIC sits in an interesting, novel space. It allows a distinctive foray
into on-line adaptive and fault tolerant evolvable hardware circuits because it
uses a COTS device and standard components. This should make its results more
acceptable to industry. It also allows an economical and time efficient foray into
the broad domain of VLSI and CAD with its use of elements that are conversant
with human design.

The goal of this paper is to describe how we arrived at GPIC. We believe that
sharing how we made our decisions and handled the issues that arose in realizing
it will be helpful to others who decide to build an analog, intrinsic system on
a modest budget.! In Section 2 we describe how we reached our decision on
granularity and selected a reconfigurable device. In Section 3 we describe how
the Anadigm AN221E04 can be configured from an evolutionary algorithm. In
Section 4 we describe our genetic representation of a circuit and explain how
we handle resource usage tracking from within the evolutionary algorithm. In
Section 7?7 we describe the particle swarm algorithm that handles component
value optimization. After these descriptions, we use a straight forward controller
problem to demonstrate that GPIC can evolve circuits. We conclude with a short
list of plans for using GPIC in the future.

2 Choosing GPIC’s Circuit Elements and Reconfigurable
Device

Choosing the granularity of GPIC’s circuit elements required that we balance
our preferences with availability. Our preferences were slightly a priori biased
toward including the information that humans use when designing circuits. Hu-
mans compose circuits from very intentionally chosen building blocks. The low-
est level building blocks may include resistors, capacitors, diodes, inductors and
transistors. With the exception of the transistor, one design merit of these com-
ponents is their linear behavior. Because of their linearity, they are relatively

! An anecdotal note: designing GPIC was our entry into the EHW realm.
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simple to assemble into systems that have analytically derivable behavior. This
allows designs to be generated and tested in conjunction with specifications.
This allows designs to be transparent, i.e. comprehensible. Often these lowest
level building blocks are combined and encapsulated to form a higher level set
of building blocks that a designer works with. For example, differentiators, in-
tegrators and adders are specific configurations of opamps. These higher level
building blocks encapsulate useful functions and establish clear interfaces. Thus,
like the lowest level blocks, they facilitate the generation and analysis of modular
designs.

Realistically, however, the capabilities of evolvable hardware are limited by
the availability of reconfigurable devices. This has been true from the field’s in-
ception. Within the scope of digital circuits, a wide variety of FPGA devices
are commercially available. This market is very broad, and companies (e.g. Xil-
inx) have been successfully developing these reconfigurable technologies for a
number of years. Unfortunately, for analog and mixed-signal circuit design, field
programmable devices are a niche market, and very few devices are easily ob-
tainable. The most recent and informative evaluation of analog options available
to us was published in 2001, [?] so we initiated our own survey that considered
the following devices:

— Two custom designed field programmable transistor arrays: FPTA and FPTA-
2. FPTA has been used in U. of Heidelberg experiments (e.g. [?]). It is an
apparently older version. FPTA-2 is used in JPL experiments. It appears
to be a successor of FPTA. It fits into the evolution-oriented reconfigurable
architecture (EORA). It is also part of the SABLES system [?,?].

— PAMA, Programmable Analog Multiplexor Array, developed at Catholic
University of Rio de Janeiro([?])

— the Lattice Semiconductor ispPAC10 FPAA [?]

— the Anadigm FPAA family. [?]

In Table 2 we compare these devices on the basis of technology for config-
uration (‘Config’), operational bandwidth, interconnection versatility (‘Topo’),
device resources, configuration time and relative cost. Configuration technology
is important because certain technologies can limit how many times a device
can be reconfigured. For example, the Anadigm AN221E04 use of SRAM is
advantageous in this respect. Operating bandwidth contributes to application
versatility.

Each device in our survey offers a different level of circuit element granularity.
In Stoica et al ([]) the authors note that the optimal choice of device resources and
programmable granularity is task dependent. They state transparent architectures
as desirable so that analysis is possible. Plus a device should not be open to
damage by an evolved configuration.

The PAMA device, [?], can function as a fine-grained architecture, similar to
an FPTA, or as a coarse-grained architecture when a human designer manually
configures certain of its switches. It was custom designed with evolution in mind.
It can accept random configurations and not sustain any damage. Rather than
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Device Config Tech BdWth  |Topo Resources |C-Time|Cost
PAMA Programmable|undetermined|limited BJTs, re-| .08 ms |high
sistors
Muxes
FPTA-2 SRAM undetermined|intra- MOS tran-|.008 ms|high
cell  and|sistors
inter-cell
Anadigm SRAM 500 kHz |intra- 4 CABs of] 3.8 ms | low
AN221E04 CAB, 2 opamps
inter- each
CAB,
inter-chip
IsPAC10 EEPROM 200 kHz  |limited opamps, |100 ms| low
caps,
resistors

Table 1. Comparison of different analog field programmable devices.

using CMOS transistors, it uses bipolar transistors, which tend to be more suited
for analog functions. It does not load its configuration into memory but must
hold the state as constant signals switched through internal muxes. This would
be problematic if it were used in an embedded system.

The U. of Heidelberg’s FPTA ([?]) is a switched network of 256 (16 X 16)
programmable CMOS transistors (half NMOS and half PMOS) arranged in a
checkerboard pattern. Typically, with this FPTA, a genetic algorithm with a
fixed length bit string genome directly represents a circuit as a vector of routing
bits, transistor terminal connections and channel geometry in the network. Like
FPTA, FPTA-2, shown in Figure 1, is a ’sea of transistors’ interconnected by
other transistors that act as signal passing devices. It consists of an 8X8 array of
cells. A cell’s reconfigurable circuitry consists of 14 transistors connected through
44 switches. Each bit in the genome controls the opening of a switch. A cell also
includes 3 fixed capacitors and a small number of directly configurable resis-
tors. In addition, it is suspected that evolution may be able to exploit parasitic
capacitances.

The FPTAs are very flexible, fine-grained devices because they use multi-
ple transistors configured by a relatively large number of switches within each
cell. With their lowest level elements they are able to express novel and stan-
dard functions. As a result of this flexibility, however, it is open to question
how interpretable or ‘standard’ a circuit design is. Clearly, circuits that humans
design are not connections of cells of transistors. This mismatch of organization
is one aspect that makes the FPTA evolved designs difficult to comprehend.
Another aspect of the FPTA architecture is that it omits the design principle of
small-signal modeling. Typically, human designers model non-linear transistors
as linear by selecting a DC reference voltage to bias the input signal so that the
transistor’s operating range has linear behavior with respect to the range of a
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small input signal. The lack of biasing is an especially relevant problem for MOS
devices, since their transconductances are generally lower than that of BJTs
throughout their operating regions.[?] Working with linear behavior makes con-
structing approximately linear circuits out of nonlinear components tractable for
humans. On one hand the omission of bias in the FPTAs offers radical flexibility.
Although it is conceivable that evolution may discover appropriate linear oper-
ating points, nothing in the FPTA’s direct genome specification ensures this.
Instead, evolution is unrestricted and can find arbitrary biases in combination
so long as it yields a circuit that is highly fit. On the other hand, it is debatable
whether evolved circuits on the FPTAs contain building blocks in any re—useable
or modular sense due to this ‘flexibility’. As well, circuits which use the devices
in a mode that is outside their intended operating envelope are very likely to
not be trustworthy at varying temperatures or consistent across different chips.

L]
mlw

One quadrant

Fig. 1. Left: FPTA-2 cell schematic showing 24 switches and 8 transistors,
Right: FPTA-2 upper left quadrant of 16 cells. From [?].

The output of an opamp, see Figure 2, is the signal difference of its inputs
with some gain. It does not require a bias point for linearity and, in combination
with resistors or capacitors, it is very versatile. For example, an opamp in closed
loop with a resistor is a linear amplifier. If a capacitor is in series with the
resistor in the feedback look, a continuous integrator is obtained. Thus, an array
of opamps, capacitors and/or resistors is a viable alternative to a transistor
array despite not being quite as fine grained. Such an array can be realized very
cheaply with a PCB. We considered designing a PCB-based opamp, RC array
with versatile topological interconnect switching. With additional PCBs and
switches, this setup would scale well and cost little. However, despite also being
transparent to configure, a PCB implementation would have limited bandwidth
and require other special purpose hardware to integrate into a testbench.

We knew of at least two COTS device families, the IsPAC10 and Anadigm
FPAA, that have circuit elements in the opamp family. The IsPAC10 , see Fig-
ure 3, consists of 4 programmable analog modules (4 opamps, and 8 input ampli-
fiers total) interconnected with programmable switching networks. This is very
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Fig. 2. Left: opamp, Middle: with negative feedback, Right: as inverter

limited interconnect between a small quantity of resources. In [?] a non-minimal
(and non-intuitive) implementation of a lead compensator was configured on
the IsPAC10 that used 3 analog modules. The parameters (i.e. gains) of the
compensator were optimized using simple parameter search via a GA. Despite a
relatively simple purpose, Greenwood reported in [?] that he found the range of
available capacitors constraining. Configuration of the ISPAC10 is a proprietary
process. Through personal communication, [?] we learned that a partnership
with a Lattice Semiconductor staff member enabled the Greenwood team to
write a simple conversion program to map their genome to an appropriate bit-
stream format. Because their genome was a list of component values that were
applied to a topology that was configured beforehand, this did not help us to
determine whether topological reconfiguration from an evolutionary algorithm
could be achieved. We assume the configuration is proprietary.

Ultimately we chose to use the Anadigm AN221E04 over the IsPAC10. Our
discussion and description of our choice is detailed in the following subsection.

2.1 The Anadigm FPAA

Anadigm is a spinoff from Motorola. It currently offers a second generation prod-
uct line of commercial FPA As called the Anadigmvortex. For detailed description
of these devices, see [?]. They are available in an industry standard 44 lead Quad
Flat-Pack(QFP) package.

Resources: Each device is an array of configurable analog blocks(CABs), each
of which contain two opamps, 8 capacitors, a comparator, and a Successive
Approximation Register (SAR) that performs 8-bit analog-to-digital conversion
of signals. The device also contains one programmable lookup table that can be
used to store information about the generation of arbitrary waveforms, and is
shared amongst the CABs. The architecture is illustrated in the left hand block
diagram of Figure 3. The FPAAs within the product line share a common general
architecture, although they vary in their I/O capabilities, their reconfiguration
capacity, and the number of CABs on a chip. All but one of the FPAAs in this
line contain a 2x2 matrix of CABs that can be freely connected to one another.
INSERT Sample and Hold, Clock phase. We used the Anadigm AN221E04
which is the entry level device. Any signal can be routed to the I/O pins of the
device through 4 programmable I/O interface blocks and two dedicated outputs,
each of which can also act as filters or amplifiers. The option for expanding
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Fig. 3. Reconfigurable FPAA Architectures: Anadigm(Left), Lattice ispPAC10(right)

the number of resources is to daisy chain multiple devices. The accompanying
AnadigmDesigner software supports this.

Configurable Elements: Despite the existence of opamps and switched ca-
pacitors, the Anadigm AN221E04 does not support circuit design at this level of
granularity. 2 Instead, with the exception of the SAR, a circuit must be specified
at the abstraction of coarser grained building blocks termed Configurable Ana-
log Modules (CAMs) that are interconnected by wires. CAMs come predefined
by Anadigm. Their documentation states they are open to requests for custom
CAMs. See Table 2 for the set of available CAMs. Among the set is a selection of
filters, amplifiers and rectifiers. This is an extensive set in terms of capability and
flexibility. It includes analog building blocks that humans frequently use such as
an amplifier, a filter, adder, and integrator. During human design, each time a
CAM is added to the current circuit design in the AnadigmDesigner GUI, the
GUI displays how the resources that implement it are allocated from a CAB.
This is illustrated in Figure 2.1. To insert a CAM the GUI must be able to fully
allocate its resources from one CAB.

2 Interestingly, this was supported in an earlier version before Anadigm spun off. Our
hunch is thatXX proprietary in nature.
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Fig. 4. Configuration of CAMs via low-level resource allocation(From: AnadigmDe-
signer2 GUI)

Each CAM has programmable options and parameters. For example, the
SumDiff CAM, see Figure 7?7, has a set of 4 options which decide upon clock
phase, optional use of inputs 3 and 4, and inversion of each input. Its parameters
are its two gains. The range of gains can be quite wide or narrow and differs
from CAM to CAM.

Configuration Technology: As illustrated in Figure 2.1, the Anadigm FPAAs
achieves dynamic reconfigurability of routing and CAM parameters through the
control of switches. The Anadigm FPAAs are apparently unique among FPAAs
in their use of ’switched capacitor’ configuration technology. A switched capac-
itor functon implements an equivalent resistance by alternately opening and
closing the inputs of a capacitor. Macroscopic resistance is controlled by the
frequency of switching. This frequency, of course, is limited to the maximum
clock frequency. Microscopic resistance is tuned by selecting capacitance. The
capacitance of each internal capacitor in the Anadigm AN221E04 is drawn from
a switched bank of capacitors. Although the software allows for the genera-
tion and routing of signals between CAMs at design time, the software only
allows dynamic reconfiguration of the options and parameters of a circuit, not
the reconfiguration of a new circuit topology. The actual configuration process
and mapping of the configuration bitstream is proprietary. The configuration
bitstream is stored in SRAM, which is more reliable than other FPAAs based
on EEPROM technology. The disadvantage of switched capacitor technology is
that it restricts operation to the discrete time domain. Because its a sample
and hold system, the device can not operate at high frequencies. It also requires
anti-aliasing and reconstructions filters.

Why we chose the Anadigm AN221E04: We have justified in Section 2 our
bias toward human oriented circuit elements. Obviously the Anadigm AN221E04
provides the level of abstraction in building blocks that we desire. Plus, the
Anadigm AN221E04 is inexpensive and easily obtained. Compared to the Is-
PAC10, it has more resources and flexibility. There are still additional signif-
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icant advantages. Given our desire to integrate evolutionary design techniques
into CAD flow, the Anadigm AN221E04 allows us to work with industry stan-
dards. Anadigm targets the device to help shorten design cycles. By intent,
Anadigm FPAA designs require less tuning and tweaking in their transfer to
breadboard, PCB or silicon. This intention probably drove the choice to use
the same switched capacitor technology that is is industry standard for silicon.
(Industry prefers switched capacitors because of the natural precision they de-
livers and how they replace resistors which are typically bulky in silicon.) It also
likely motivated a device implementation that makes circuits insensitive to par-
asitics. This intent is validated by a teamed service called “Frame Freeze” which
Anadigm offers. They will transfer a design to silicon to meet ASIC/AAAP level
production and silicon level power usage. While we are restricted to the discrete
time domain at low to medium frequency response, we nonetheless are content.
An industry segment also works in this domain so there an industry target for
whom evolutionary techniques may be useful exists.

| CAM \ CAM \ CAM |
Voltage Transfer Function Inverting Differentiator Divider

Half cycle inverting Gain Stage Biquadratic Filter |Half Cycle Gain Stage

Half Cycle Sum/Difference Stage| DC Voltage Source | Inverting Gain Stage

Gain Stage: Switchable inputs Bilinear Filter Integrator
Gain Stage: Polarity Control Half Cycle Rectifier [Half Cycle Gain Stage
Gain Stage - Output V Limiting| Inverting Sum Stage Multiplier
Rectifier w/ Low Pass Filter Sample & Hold Sinewave Oscillator
Transimpedance Amplifier Waveform Generator

Table 2. Anadigm AN221E04 CAMs

R G e e

Fig. 5. Sample Anadigm CAM, Inverting Gain block illustrating 'switched capacitor’
configuration
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3 Configuring the FPAA with GPIC

One of the problems in choosing COTS devices is that a systems designer must
rely on the product vendor for documentation and support. We purchased a
Anadigm AN221E04 mounted on a development board for $299 though the ad-
vertised price today is $500. This package came with Windows based develop-
ment software. We connected the development board to our desktop workstation
with a serial interface. We took the risk of buying without knowing if we would
be able to configure circuits from our software. A human circuit designer uses
Anadigm’s GUI to graphically place components and connect up a circuit before
configuring the device with a simple command over the serial port. We knew the
device was not ’evolutionary safe’. That is, random configurations could dam-
age it. The straw-man alternative we considered was to ignore vendor software,
mount the device on a custom PCB and interface to our reverse-engineered con-
figuration software. This was infeasible because it would take the same effort a
company like Anadigm had already invested and we had much less effort avail-
able.

We then investigated configuring the device with our own software which
would drive the serial port on the development board. Ultimately, although the
product specification provided us with a high-level picture of the device archi-
tecture, we were unable to determine the all important mapping of configuration
bits to control the internal Configurable Analog Blocks(CABs).

This implied we pursue the option of using the software provided by the
vendor. Anadigm sells the Anadigm Designer-2 EDA tool which offers a simple
drag-and-drop interface to design. This software has a ’intuitive’ graphical in-
terface and links up to a built-in simulator. A C-based software API allows a
programmatic approach to generating and tuning circuits. Unfortunately, this
ability to put the device under ’Algorithmic Control’ did not support features
that were sufficient to perform evolutionary search on circuit topologies.

Finally, through a special agreement with Anadigm, we obtained a pack-
age called AutomationDoc that included software and an API description. This
package had been developed to test the GUI during product development. It is
not a product release. As a result of installing the package, the GUI is registered
as an Active-X object. With this package and a Microsoft C++ compiler, we
were able to send designs from our EA module to the Designer-2 GUI by trans-
lating them in the EA subsystem to a series of “build commands” dispatched
to the GUIL. A subsequent “configure” command downloads the configuration
to the device. This takes about a second which is not ideal but not prohibitive
either. This solution also proved to be conducive to demonstration, since the
GUI provides the option of displaying a design that it is passed. We can call
this option as the Evolutionary Algorithm generates a circuit and sends it to the
GUIL One disadvantage of this working solution is that it required us to port
our development environment over from the GNU C++ compiler to Microsoft
development products. Each configuration takes about 1 second.
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4 Choosing a Genetic Representation

Evolutionary search that intrinsically realizes and evaluates circuits on recon-
figurable hardware is performing search in the space of all possible device con-
figurations. However, not all evolutionary algorithms are the same. One way
in which they differ is by the genetic representation they use, i.e. the genome.
This distinction is very important because evolutionary crossover and mutation
are applied to a genome which is only subsequently mapped to a configuration.
Thus, the search trajectory across the same configuration search space differs
depending on a genetic representation. The genetic representations of the evolv-
able hardware community have ranged from directly expressing the configuration
bitstream to expressing a circuit level representation. A prominent example of
the first extreme are the projects by A. Thompson ([?] and others who used
the Xilinx 6216. Because the 6216 had no configurations that could possibly
short, a bit vector genome directly encoded the configuration vector. For each
configuration bit, the genome had a bit. Although devices that have this robust-
ness in configuration have reemerged recently, their complexity and gate count
make direct genomes for the configuration bitstream unwieldy because they de-
fine an intractably large search space. A genome is also a bit vector with the
FPTA devices,. The genome bits, rather than expressing configuration bits ex-
press the open or closed state of the device’s switches. A subset of the switches
determine topoloy — the interconnection between cells. The complementary sub-
set determines intra-cell connections in something akin to component selection
since the gates affect transistor function. The bit vector is fixed in length. Its
length matches the number of switches on the device.

Koza has demonstrated many equivalent genetic representations for a cir-
cuit, [?]. When expressing coarse grained components and their topology in the
genome, he uses a program tree (often with automatically defined functions).
The numerical parameters of the components are handled in an arithmetic re-
sult producing branch and searched in tandem with the topology. Koza does not
use intrinsic evaluation. Because this work does not consider device instantia-
tion, there is no limitation on how many components can be used in a circuit.
The genomes are variable length .

We feel that in order for evolution to perform efficient and routine design
of entire systems, an evolutionary algorithm must, like humans, be able to tar-
get multiple levels of abstraction and handle mapping between levels of repre-
sentation. The genome must be able to sufficiently express abstract solutions.
The genetic crossover and mutation operators must adequately and effectively
search the space in coordination with selection. The genome must also be chosen
keeping in mind how it determines the neighborhood relationship in the fitness
landscape of the search space. In GPIC a subset of the Anadigm CAM’s are
chosen to comprise the primitive set (functions and terminals) in the sense of
genetic programming. The GPIC genome is a cyclic graph in which each node
is an instance of a CAM and directional links define the topology. The graph
can vary in its number of nodes and links that connect inputs to output but
we implement the graph as a fixed length vector. Fach element of the vector
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is a structure which specifies a CAM and points to the CAM’s input source(s).
Because some subgraphs in the vector may not connect inputs to outputs, they
are effectively not part of the circuit though they are part of the genome. The
genome is algorithmically translated into a sequence of “build” commands sent
to the Anadigm GUI (see Section 3). After the translation, a “configure” com-
mand is dispatched which downloads the configuration to the device.

The encoding of coarse grained components in the genome makes GPIC
reminiscent of Koza’s genetic programming tree representation ([?] as just de-
scribed. The obvious difference is the cyclic graph versus the tree. We implement
crossover not as a subtree swap but as a swap of vector values. Another difference
is the genome length — fixed in GPIC’s case and variable in Koza’s. The physical
limitation of resource quantities on the device demand that GPIC not evolve
a genome that requires more resources than on the device. This is ensured by
the fixed length genome and by the decoding algorithm that maps the genome
to a series of build commands. The decoding algorithm makes use of a resource
manager to account for resources that will be used on the device as it trans-
lates the genome into “build” commands. If it ever encounters a CAM (ie. node)
for which the resources cannot be allocated, it replaces this node with a wire.
GPIC’s genome is also influenced by Miller’s Cartesian Genetic Programming
(CGP), [?]. We consulted that description in designing ours. The CGP genome
is also a graph mapped to a matrix of varying component with links between
and among columns. CGP’s genome is not cyclic in contrast to GPIC’s.

Each instance of a CAM has a variable number of programmable options and
parameters. For example, the SumDiff CAM of Figure ?7? has 4 options and two
gain parameters while the simple “Half cycle Gain Stage” has only 2 options
and 1 gain parameter. The genome stores in each structure another two vectors
of data that the genome to circuit translation process interprets as parameters
and options. Each vector is a fixed length. If the parameters and attributes of
the CAM are fewer than the vector length, the extra values are ignored. Like
the redundant nodes and links of the circuit which do not connect input to
output, this redundant information is maintained in the genome. It may have
some function as memory. At this point, we have not examined its dynamics
closely.

4.1 The search algorithms:

We use the standard generation based processing loop of GP and GAs to conduct
topology search. At initialization, a population of random genomes is created.
Each genome is mapped to a circuit topology with each instance of a CAM spec-
ified using its options and parameter values. Serially each genome is configured
on the device and given a test signal. The resulting output signal is captured
and evaluated in comparison to a desired output signal. The error is mapped
to a genome fitness. After the entire current generation is tested, tournament
selection supplies parents for the next generation. Each parent is copied to create
an offspring in the next generation. Offspring are mutated before being added
to the population of the next generation. Mutation can be applied in two ways
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to the genome: to a CAM instance by changing its type and, to the input(s)
of a CAM by changing a link in the graph. We do not mutate the options and
parameters of a CAM. Instead of being evolved, they are optimized via Particle
Swarm Optimization [?]. Pseudocode of the PSO is in Figure ?7?.

Note from UM to reader: This section needs

— a figure of a circuit

— a figure of the same circuit represented as a cyclic graph
— a figure of the vector with one structure element shown
a figure of the crossover?

4.2 Tracking Resource Allocation on the Anadigm AN221E04

Although GPIC’s genetic representation uses the Anadigm CAMs , we took care
to ensure that a circuit element of a genome is an implemented abstraction that
hides the details of the Anadigm CAM implementations (or of any device ele-
ments in general). We want the evolutionary search and PSO algorithms of our
software to be totally portable to devices with different sets of resources and
interconnects. One property specific to a device that needs to be tracked is the
quantity of available device resources. Tracking this is not an issue with intrinsic
digital evolvable hardware. In the digital domain [?], a Hardware Description
Language can conveniently be used to describe high-level structures and func-
tions independent of any particular hardware platform. Translation down to an
FPGA is handled by the design compiler and synthesis tools. In contrast, we
have not used an analog hardware description language. To solve the problem
in GPIC, we define a hardware resource abstraction that expresses the con-
stituent elements of the circuit elements. These resources form a program tree
description of the circuit, implemented in C++ as a directed graph. Because
constraints are also placed on the signal routing of most programmable devices,
we represent wires as resources as well. We have reverse engineered the resource
allocation strategy of the Anadigm software and re-implemented its logic as a
set of device specific resources that specialize the hardware resource abstraction.
Abstract resource are tracked by a resource manager. Figure 77 describes this
diagrammatically.

5 GPIC in Action: Evolving a Controller

We have initially used GPIC to evolve a controller for the simple 3rd order plant
shown in Figure ?7. A table of the CAMs in the primitive set can be found in
Table 5.2 along with their respective parameters and options. Table 77 provides
the parameter settings we used for population size, swarm size etc.

5.1 Fitness Function

Though a simple step function would seem to be all that is required to evaluate
a controller, we used a more complex signal to ensure that GPIC did not evolve
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a signal generator regardless of the input. The signal is shown in Figure 7. The

fitness of a circuit is the sum of squared errors between the circuit’s output signal
and the test signal. We sampled the signal at XX Hz.

5.2 Evolved Solutions

In every run we found a fit individual. Here are a few examples....

CAM Options Parameter(s)
Inverting Gain Block gain value
Integrator integration constant, ref. voltage
Bilinear Filter type: {lowpass, highpass, allpass }
Comparator reference voltage

Table 3. CAMs used in the GPICFunction Set for Controller Evolution

Fig. 7. Test Signal for Controller Experiment GPIC

6 Summary

By combining the exploitation of coarse grained elements with intrinsic testing
on a COTS device, we think GPIC comprises a distinctive approach to analog
EHW. To put it in the context of extant EHW systems, Table 6 shows GPIC’s
characteristics using a framework offered by Torresen in [?]. GPIC’s application
domain is analog circuits, it uses a genetic programming-like representation and
targets analog technology. It evolves a complete circuit design where building
block functions and their interconnections are evolved. The building blocks of
GPIC are at a functional level. They are analog blocks, which for a controller
problem, include an adder, amplifier, differentiator and integrator. The target
hardware is a COTS FPAA, the Anadigm AN221E04 and the fitness computa-
tion in hardware is online, i.e. the hardware device gets configured fore each GP
population member each generation. The GP module runs off-chip on a standard
Intel-based Windows workstation.

This paper’s goal has been to elucidate our decision process in designing
GPIC. We feel our decision to use the Anadigm AN221E04 forges GPIC’s iden-
tity. We chose a COTs device over a custom device. The COTS device is much
cheaper. The Anadigm AN221E04 only cost about $300. The price of the full
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Application EA| TE | AR |BB THW FC EV

Analog circuits |GP|Analog|CCD|Analog Function|COTS FPAA of|online|off-chip
blocks e.g. adder,|op-amps, resistors
differentiator and  capacitors,
AN221E04

Table 4. The Genetic Programming Intrinsic Circuit (GPIC) design platform summa-
rized.EA = Evolutionary Algorithm, TE=Technology for the target hardware, AR =
evolved architecture, CCD = complete circuit design, BB = Building Block, THW =
Target Hardware, FC = Fitness Computation, Ev = Evolution.

SABLES system which includes FPTA-2 is $16000, [?]. 2 One usual hesitation
with COTS hardware regards access to the configuration process so that an evo-
lutionary algorithm can direct it. The Anadigm AN221E04 does not have an
open configuration process. But, with software from the vendor, a reasonable
solution was worked out: GPICuses the Anadigm design GUI as an intermedi-
ary between the evolutionary algorithm and the configuration process. Another
hesitation is ensuring that the device is never configured with a circuit that will
short it. GPIC sidesteps this problem with its genetic representation of circuits
that ensures correctness. GPIC gets a double-check from the Anadigm GUI too,
during configuration. The Anadigm AN221E04 also uses SRAM to hold a con-
figuration which is a more robust method for an adaptive, fault tolerant system.
The PAMA device, for example, does not use non-memory based configuration
technology. The Anadigm AN221E04 is superior to the ISPAC10 in terms of
quantity of op-amps and flexibility.

Among COTs FPAAs, we find the Anadigm AN221E04 to be superior to the
IsPAC10. It has more resources and better interconnect flexibility. Importantly,
the switched capacitor configuration technology of the Anadigm AN221E04 is
standard with industry. It implies that evolved circuits when taken to silicon or
breadboard will meet specifications within broader tolerances because there are
no parasitic interconnects influencing the evolved circuits. This will facilitate the
ultimate placement of evolved circuits in the field.

Finally, in using the Anadigm AN221E04, we opted for coarse grained el-
ements. Coarse granularity makes GPIC contrast with FPTA approaches. We
think that GPIC enables a parallel set of investigations that will provide inter-
esting comparisons between the non-linear design space of the FPTA and the
human oriented, conventional design space. We believe our choices additionally
provide us with traction into both adaptive, robust hardware evolution and the
more traditional pursuit of analog CAD.

3 Obtaining simply the FPTA-2 device alone was also not a viable option because
some licensing issues could not be resolved. This would have additionally required
work to fabricate a custom-designed printed circuit board to mount the device which
would have slowed us down.
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