A framework
for design

This chapter describes a basic programming framework that lets us build, test and
analyze any interactive device. Once we have a framework for programming finite
state machines, we can do all sorts of things efficiently. The design framework
presented here is very simple, trimmed as it is for the purposes of the book. If you
like programming, please be inspired to do better with your own design projects.
If you don’t like programming, it is still worth reading through this and the next
few chapters, but be reassured that non-programming designers could use tools
that hide the programming details. However, the insights a designer can achieve
through this sort of programming are very important—so read the this and the
next few chapters to see what can be achieved.

9.1 Future-proof frameworks

An important question to ask at the start is, “How extensible and future-proof is
this approach?” A very cynical answer is that the framework holds together for
the devices we want to cover in this book, and not much else, let alone the future.
A more useful answer is that the framework is about idess, which it illustrates
perfectly clearly, and if you want to really use it, it will need developing and ex-
tending for whatever your particular application is. Most likely, you would build
something like it into a design tool. Of course, if you are developing real pro-
duction devices, you may not want to use JavaScript anyway—but the JavaScript
ideas we describe will convert easily to any programming language.

A more realistic answer is that the framework is based on finite state machines.
These are core technology for any pushbutton style user interface, though you
may wish to make minor modifications to the framework to handle details of your
specific applications.

> The framework is not restricted to “pushbuttons” as such, although they are
practically ubiquitous ways of interacting with devices; for example, we'll have a
look at a cordless drill—which has knobs and sliders—in section 9.8 (p. 316).
We will discuss some variations on the framework, with ideas for programming
in more professional ways, in section 9.7 (p. 312).

273

274

Chapter 9 A framework for design

In the future, user interfaces will no doubt move beyond push buttons. Deviceg
may be controlled by speech or even by direct thought, through some sort of brain
implant. The framework will work just as well for such user interfaces, although
we’ve only developed it here with button pressing in mind. In fact, a really impor-
tant idea lies behind this: speech (or any other panacea) does not escape any of the
interaction programming issues our framework makes clear and easy to explore.

9.2 A state machine framework

We first introduce our programming framework using a simple toy example—the
framework is more important than the example, for the time being.

The first, and simplest, device we'll consider is a lightbulb, with three states: off,
dim, and fully on. This can be drawn as a transition diagram with three circles,
one for each of the states, and with arrows among them showing how one could
change the state. As it happens, this lightbulb allows any state to go to any other
state directly—but this is rarely the case with more complex devices. Figure 9.1
(facing page) is a state transition diagram showing how the lightbulb works.

The user interface is simple—buttons as well as states are called Off, On, Dim.
For this device, regardless of what its called, a button always changes from any
state to a state with that name. This makes the user interface very simple and
consistent. There are only two disadvantages: if there are lots of states, there need
to be lots of buttons, and—for the purposes of this book—there is a small risk that
we may confuse the state names and the button names (in general, they need not
be the same).

Most device descriptions are much bigger, but the lightbulb is simple and famil-
iar enough to show it in its entirety.

There are many ways to program. For such a simple device, it would be tempt-
ing to go straight into programming: there are only three states and three buttons,
and this is easily programmed. Indeed, we know that each button sets the state
with the same name, so we may as well program as follows:

var state;

function action(button)
{ state = button;

}

However, if we wrote program code like that, we would have several problems.
We would find it hard to modify the design (what happens when we change the
name of a button, say to make a device for a foreign market?), and we would find
analyzing the design hard (the code above is so terse that it isn’t obvious what it
does). We need to avoid both problems: we want a flexible framework that allows
easy analysis to help the designer.

First, we will represent the device by a set of arrays. We have an array of button
names, an array of state names, and a table (a two dimensional array) specifying
how each button changes each state. The advantage of this approach is that it -
makes a working device, and it permits any analysis.

9.2. A state machine framework S
B

Bright

Figure 9.1: The transition diagram of a simple three-state lightbulb, which can be in
any of three states: on, off, or dim. The initial state is Off, as shown by the default
arrow. All actions are shown, even where they do not change states, so there are always
three arrows out of all states.

Since every device has its own arrays, and we want to have a general approach
for any device, it helps to group all of the device details together. JavaScript (and
most other languages) allow data structures to be combined into single objects,
and that is what we will do here.

The approach shown below is a pretty full description of how a device—in this
case, our lightbulb—works. ,

var device = {
notes: '"simple lightbulb, with dim mode",
modelType: "lightbulb",
buttons: ["OGff", "On", "Dim"],
stateNames: ["dim", "off", "on"],
fsm: [[1, 2, 01, [1, 2, 0], [1, 2, 011, // see Section 9.2.2 (p.277)
startState: 1,

state: O,
‘manual: ["dim", "dark", "bright"],
action: ["press", "pressed", "pressing"l,
errors: '"mnever",
graphics: "bulbpicture.gif"

};

Notice that we have allowed for quite a few more features: we’ve specified
the initial state (the lightbulb will start at the state off); we've given the device a
name and picture; and we’ve chosen simple words and phrases to describe what
the device does. We can now concentrate on getting the simulation and analysis

275

Chapter 9 A framework for design

to work, confident that we can easily change the device specification later if we
want to.

9.2.1 How the specification works

The lightbulb definition creates a JavaScript object and assigns it to the variable
device. The various fields of the object can be accessed by writing them after dots;
for example, for this object the field device.modelType is the string "lightbulb".

Some of the fields are arrays. For example device.action is an array with
three strings: ["press", "pressed", "pressing"]. The elements of arrays are
accessed by using numbers written between square brackets. Given these val-
ues, device.action[1] will be the string "pressed". Like Java and C, JavaScript
counts array elements from 0, so device.action[0] is the first array element and
device.action[1] the second.

Some devices won’t have buttons to press; they might have pedals, levers, or
knobs to turn. So the device.action field says how the user is supposed to do
things: for this simple lightbulb, the basic action is to press a button. Since we
might want to use the right word with different tenses, we’ve provided for present,
past, and future forms of the word. The field action can be used to generate En-
glish explanations of how to use the device: we may want to generate text like, “If
you are in the dark and want the lightbulb to be on, try pressing the On button,”
or, “To put the lightbulb off, press the Off button,” or, “You pressed the On but-
ton, but the lightbulb is still on.” You can see that the various English fields in the
device specification will give us great scope for generating helpful text messages
for users and indeed for our own analyses, making it easier for the designer to
understand too.

The framework is simple but very flexible. If you want to change the names
of the buttons, you could change the line that starts “buttons:” and give them
different names. The advantage is that the complete definition of the lightbulb is
kept in one place. It is quite separate from how we get the user interface to work
and quite separate from how we make the device look.

An obvious limitation with the scheme is that I've only got one graphics image
to cover all three states of the device. It might have been better to make graphics
an array with, in this case, three images. With only three states and hence only
three images, that seems to make sense, but in general we might have thousands
of states and we would probably not want to end up having to organize thousands
of pictures too. Instead, pictures would be better generated by a concise bit of
program (which is how almost all graphical user interfaces work: all the images
are drawn by program), and each state’s specific drawing would be laid on top of
a basic background image.

The lightbulb has three states, and as can be seen reading the stateNames field,
they are called dim, off, and on; because of the way JavaScript array subscripts
work, they are numbered 0, 1, and 2, respectively. The actual numbers are arbi-
trary (though they have to be used consistently throughout the definition). Note
that I've chosen the numbers for buttons and states so that their names do not cor-
respond, as in general there will be no clear-cut correspondence even though for

9.2. A state machine framework

this simple device there is one we could have exploited. But we're trying to build
a general framework for any device, not just for special cases.

0.2.2 State transition tables

The key part of the device’s definition is the bit fsm. The numbers here define the

finite state machine (FSM) that implements the device, the three-state lightbulb in
this case. The definition of fsm in JavaScript, [[1, 2, 01, [1, 2, 01, [1, 2
011, is equivalent to a simple matrix of numbers:

>

—
N NN
OO o

These particular numbers are not very exciting, but in general the fsm matrix
tells us how to go from one state when a button is pressed to the next state. Every
row of this matrix of numbers is the same only because the lightbulb is so simple,
and its buttons always do the same things; in general, though, each row would be
different.

The matrix structure is easier to understand when it is drawn out more explicitly
as a table: J
Go to this state
when this button is pressed

When in this state ‘ ‘ Dim
0: dim l:off | 22on | 0:dim
1: off l:off | 22on | 0:dim
2: on l:off | 22on | 0:dim

From this table we can read off what each button does in each state. This light-
bulb isn’t very interesting: the buttons always do the same things, whatever the
states.

The same information can be presented in many other forms, and often one or
another form will be much easier to read for a particular device. State transition
tables (5TTs) are a popular representation.

The full state transition table for the lightbulb is particularly simple:

| Action | Current state | Next state |

on

Press (Off) off off
dim
on

Press off on
dim
on

Press off dim
dim

Each row in the table specifies an action, a current state, and the next state the ac-
tion would get to from the current state. Other features may be added in further

277

Chapter 9 A framework for design

columns, such as how the device responds to the actions, or the status of its indica-
tor lights. (We would also need corresponding entries in the device specification.)

State transition tables can usually be made much shorter and clearer by simpli-
fying special cases:

B If an action takes all states to the same next state, only one row in the table for
the action is required (cutting it down from as many rows as there are states).

B If an action does not change the state, the row for that state is not required
(with the proviso that if an action does nothing in any state, it needs one row to
say so).

B If an action has the same next state as the row above, it need not repeat it.

Here is a state transition table for a simple microwave oven, illustrating use of all
these rules:

[Action | Current state | Next state]
! Press | any I Clock]
| Press [any ' Quick defrost]
Press Clock Timer 1
Quick defrost
Timer 1 Timer 2
Timer 2 Timer 1
Power 1 Timer 2
Power 2 Timer 1
I Press ’ any Clock }
Press Timer 1 Power 1
Timer 2 Power 2

This table was drawn automatically in JavaScript from the specification given
in section 9.4.6 (p.286)—it was typeset using IATgX, though HTML would have
done as well. Unfortunately, and ironically because of the simplifying rules, the
JavaScript framework code to generate this table is longer than it's worth writing
out. The full code to do it is on the book’s web site, mitpress.mit.edu/presson.

Our simple framework is written in JavaScript, because it has lots of advantages
for a book, but a proper development framework would be much more sophisti-
cated. It would allow designers to write state transition tables (and other forms
of device specification) directly—just as easily as if they were editing a table in
a word processor. Behind the scenes, a proper design tool constructs the finite
state machine data, which is then used to support all the features of the frame-
work. Ideally, the finite state machine would be reconstructed instantly when
even the smallest change was made to the table, and every feature the designer
was using—simulations, user manuals, analysis, whatever—would update itself
automatically.

To recapitulate, from the framework model we can generate representations of
the device—such as STTs and, later, user manuals, analysis, diagrams and help—
but we can also (with a little more effort) use those representations to either edit

9.3. Prototyping and concurrent design

or generate what we started with. This creates a powerful two-way relationship,
and it is always worth thinking about what opportunities there are to do this.

The general idea is called equal opportunity: everything has an equal oppor-
tunity to contribute to the process. When equal opportunity is used in a design
process, there is no need to see one product—such as a user manual—as the out-
put of the design (and therefore likely to come last) but as part of the design. If
a technical author makes changes to the manual, those changes get carried back
in the appropriate way:to the original design, and the device would then behave
differently—and no doubt have a better manual for it too.

9.3 Prototyping and concurrent design

Now that we have come this far, it's a simple matter to write a program that can
run the device from the table. Since we are using JavaScript, we'll first build the
device simulation as an interactive web page.

> Practical programming continues in section 9.4 (next page), but first, we want
to philosophize about frameworks and design processes.

In conventional design, we distinguish between low-fidelity prototypes and high-
fidelity prototypes. Typically, a low-fidelity prototype will be made out of paper
drawings and will be used to help users and designers understand the major states
of a system; high-fidelity prototypes are usually devices that look more realistic,
typically being drawn using decent computer graphics.

The problem with this view of design is that in progressing from low to high-
fidelity, you practically have to start again. You make paper models, throw them
away, make more realistic models, throw them away, then start making a proto-
type on a computer—then you make the real device. You have to do several times
as much work, and each stage loses whatever it learns: paper models for a low-
fidelity prototype don’t have any program code in them anyway; later prototypes
are often written in Flash, Tcl/ Tk or some other easy-to-use and flexible program-
ming environment, but the final product has to be rebuilt as a standalone or em-
bedded device using some completely different technology, such as programming
in C or a burned in firmware on a chip.

Often the final implementation is such a technical process—it must deal with
things like wireless communications protocols, battery management, screen up-
dates including cool animations—that the programmers closely involved with the
earlier design stages are now not involved at all.

Why be so inefficient? Why not have a design framework that covers a wide
range of development needs? This chapter will get a design to a stage where it runs
like an interactive web page; if you print off the web' pages, you will have a low-
fidelity paper prototype. If you get a user to interact with the web site (perhaps
after putting in some nice images) you have a higher-fidelity prototype where you
can start getting feedback from users. You'll also be able to generate user manuals
and get lots of interesting design analysis to help you pinpoint design issues that
need attention—or are opportunities for innovation. Crucially, as you discover

279

Chapter 9 A framework for design

ways of improving the design—say, when a user spots something-—you can revise
the design and redo everything very efficiently.

The framework is surprisingly simple. Obviously what we are sketching is more
pedagogical than real, but the approach—the ideas and motivation behind the ‘
approach—has many benefits. It helps makes design concurrent: everything can
be done more-or-less at once, and no information need be lost between successive

phases of the design process. ,
When we use a design framework to design concurrently, the following advan-

tages become apparent:

B Complex information is shared automatically among different parts of the
design process and with different people (programmers, authors, users)
engaged in the design process.

B Design ideas and requirements formulated in the framework can be debugged
and quality-controlled once, yet used for many device designs.

B Work need not get lost. The same design representation pervades everything
and does not need to be redone or “repurposed” for other aspects of the design:

B Many problems for any part of the design can be identified immediately. For
example, technical authors can start to write user manuals immediately;
problems they face (say in explaining difficult concepts or in using draft
manuals in training sessions) are then known from the start, rather than when
it is too late.

B Rather than waiting for later stages of a design process to confront problems, it
is possible to test how the “later ” stages work almost immediately. The entire
design life cycle can start to be debugged from the earliest moment, and
feedback from draft final stages is available to improve the earliest conceptual

work.

B It is possible to improve the design framework itself. Insights to improve the
framework that help particular design projects are programmed into the
framework and then are freely available to other projects.

These are grand claims for something so simple, but this is a different philosoph-
ical approach to design: you start with a simple framework and embellish it, by
extending the framework in different directions as need arises. Since the exten-
sions are automated, if you make any changes, the products are regenerated. The
alternative is to have a complex design environment, where each product—low-
fidelity, high-fidelity, whatever—is done from scratch, and has to be done again if
there are any changes. Put another way, since every interactive device is a state
machine, we build a framework to run and analyze state machines.

9.4 Prototyping as a web device

There are three main ways to convert a device into an interactive web site, which
we'll now explore in turn.

9.4. Prototyping as a web device

9.4.1 Using HTML links within a page

The simplest and most direct way to convert a device specification into an ”inter-
active experience” is to translate it into a single HTML page.

First, check that your JavaScript device specification works—for if it has any
errors in it (like a missing comma) nothing will work. It's good practice to start
off with something simple, make sure it works, then get more sophisticated—but
only once you that know the foundations are sound.
var device = ...; // insert your device specification here.
document .write("<h1>Summary of "+device.modelType+"</hi>
");
document .write("This device has "+device.stateNames.length+" states and ");
document .write(device.buttons.length+" buttons.");

> As described in section 4.5 (p. 105), where we defined the function plural, this
JavaScript would generate better English if we wrote ... "This device has
"+plural (device.stateNames.length, "state")+" and
"+plural (device.buttons.length, "button")+"."

You can either use + to join strings together (+ will also add numbers), or you
can just as easily use several calls to document . write on the strings separately. It's
a matter of personal style.
for(var s = 0; s < device.fsm.length; s++)

{ document.write("<hr>In state "+device.stateNames[s]
+" you can press:");

for(var b = 0; b < device.buttons.length; b++)

document.write(""
+device.buttons [b]+"</1i>");
document .write ("");

b
This will generate a hugely insightful web page! It'll look like this:

In state dim you can press:
o Off

*On

e Dim

In state off you can press:
o Off

e On

° Dim

If you click on one of the buttons, shown in your browser as underlined hot text,
the web page will scroll up and down to get the current state at the top (depending
on your browser: you may need to make the window smaller so you can see it
scrolling—otherwise, your browser won’t seem to do anything if the target state is
already visible in the window without scrolling). In a sense, you've not so much
got an interactive simulation of an interactive device as a rather banal interactive
(hypertext) user manual for it.

It’s easy to do much better. Here’s one idea: give the user some hints about
what pressing a button will do:

281

282

Chapter 9 A framework for design

for(var s = 0; s < device.fsm.length; s++)
{ document.write("<hr>In state "
+device.stateNames[s]+" you can press:");
for(var b = 0; b < device.buttons.length; b++)
if(device.fsmls][b] != s)
{ document.write(""
+device.buttons[b]+"");
document .write(" - goes to state "
+device.stateNames [device.fsm[s] [b11+"");
document.write("</1i>");
}
document.write("");

}

In this example, I changed the HTML link names from simple numbers (in the
first example) to new followed by the state number (in the second example)—to
ensure that the examples can safely work together without their link names clash-
ing. I've also removed all transitions that do nothing; this makes the manual a lot
shorter for many devices.

9.4.2 Multiple HTML pages

Rather than use a single page and rely on scrolling, we can convert a device into a
multipage web site with lots of HTML files. The easiest way to do this is to have
each HTML file correspond to a single state, HTML links among the pages then
correspond to transitions. With this approach, it is very obvious that clicking a
button changes state, since the browser loads a new page.

Typically, each page would say which state it was, and every page would have
named hot text representing the device’s buttons, much as before. Each page can
have a name like devicel.html, device2.html and so on, corresponding to the
HTML description for what state 1, state 2, and so on do.

If you represent a device like this as lots of linked web pages, try using a web-
authoring tool, like Dreamweaver, which can run checks on web sites to check
that all the links work—for exactly the same reasons an interactive device should
be checked.

> Dreamweaver has built-in tools to find pages you never link to and to find links
that don't work. These are issues we will deal with later, in section 9.5 (p. 288),
when we will write JavaScript to do these and other checks.

Representing a device as lots of web pages requires some way of writing lots of
files automatically, which, unfortunately, is beyond JavaScript’s capability when it
is running in a browser.

Using one file, many URLs

Instead, we can “cheat” to achieve the same effect. Rather than naming lots of
files devicel.html, device2.html, and so on, we use the URLs device.html?1,

9.4. Prototyping as a web device

283

device.html?2, and so on. This is practically the same thing, except that every-
thing can now be done with a single file, device .html, with the “search” part of
the URL (what comes after the question mark character) selecting which state the
device is in. ‘

In the approach we used above, a for loop ran over all possible values of the
state number. Now each page only has to deal with one state, but it gets the state
number not from a for loop but from the search part of the URL, as follows:
var device = ...; // pick a device
var state = location.search.substr(1); // get the search string

if(state == "" || state < 0 || state >= device.fsm.length)
state = device.startState; // use initial state if not given explicitly

document .write("<hi>"+device.modelType
+" is "+device.stateNames[state]+"</h1>");

document .write ("");
for(var b = 0; b < device.buttons.length; b++)
document .write("<a href=device.html?"
+device.fsm[state] [b]+">"+device.buttons [b]+"</1i>");
document .write("");

Using URLs for states

An alternative to these simple (but systematic) methods of using the state number
to directly select an HTML page is to use stateNames to apply URLs to states. Each
state has a name that is the file you want the browser to show when the device is
in that state (of course, if you want the names to be sensible, you could add an
array url to the framework to serve the same purpose and keep stateNames with
its original purpose).

Associating URLs with states reminds us that a state can be sophisticated, just as
a URL could be a movie, an interactive form, or even a whole other web site, with
any features within it. In other words, states in the framework are really clusters,
in the sense of statecharts.

> For more on statecharts and clusters, see section 7.1 (p. 201).

9.4.3 Using forms

The third way of converting a device to an interactive web page can be done easily
in JavaScript and is by far the best way for our purposes. It uses an HTML form
to set up some buttons and a simple display, and the form text is updated with
the state name (and anything else you want to say). This is an extremely easy and
reliable way to get dynamic HTML working. Forms also give us buttons that look
like buttons, so we can do better than using underlined hot text.

Loading up a web page in your browser with the code we will develop in this
section will get a picture something like figure 9.2 (next page).

284

Chapter 9 A framework for design

. fofifon) foim)
State = dim

Figure 9.2: What the lightbulb device simulation looks like after you press the
button. The three buttons of the device are shown along the top row, and underneath
is the text field that displays the current state name, all generated by the framework
code.

First you need a basic form (written in standard HTML) for the buttons and 4
text field for the state name:

<form>

<input type=’button’ value=’0ff’ onMouseup=’press(0)’>

<input type=’button’ value=’0On’ onMouseup=’press(1)’>

<input type=’button’ value=’Dim’ onMouseup=’press(2)’>

State = <input type=’text’ name=’display’ readonly><p>
</form>
Rather than calling specific button functions like off in the HTML code for the
form, we've used a more general approach by having a single function press
that can do any button; it just needs to be told which one. Thus press(0) means
do whatever pressing should do, press (1) means do whatever pressing
should do, and so on.

The HTML form above can only handle a three-button device, and it is restricted
to fixed button names (Off, On, Dim) at that. It is better to use JavaScript to gen-
erate a form for any device specification. We only need a JavaScript for loop to
do it and to use document .write to generate the correct HTML. Here’s how to do
everything automatically:

function makeForm(d)
{ document.write("<form>");

// generate one line for each button

for(var s = 0; s < d.buttons.length; s++)

{ document.write("<input type=’button’ ")

document.write("value=’"+d.buttons[s]+"> ")
document .write ("onMouseup=’press("+s+")’>")

}

// plus some more HTML to get a working display

document .write ("
State = <input type=’text’ name=’display’ readonly>")

// then finish the form

document.write("</form>")

}

Now, if we write <script>makeForm(device)</script> anywhere, this will
generate the HTML form code automatically. If the device is the lightbulb we de-
fined earlier in this chapter, then this code will automatically generate the example
form given above.

9.4. Prototyping as a web device

9.4.4 Look and feel

The last few sections developed very different appearances for the device, yet they
all worked the same way. First, the device was presented as a single web page,
then as many separate web pages of text, and finally we generated a form. The
design and layout of the form was built into the code of makeForm()—the earlier
two “look-and-feel” approaches were so banal we didn’t even give the JavaScript
that generated them a special name.

Every device we work with will now end up looking much like this. If we
wrote a different makeForm() we could generate a form with a quite different lay-
out, color scheme, or whatever. Then every device we worked with would look
different, but consistently. So in particular, we can change how they look without
changing how they work—a process sometimes called skinning,.

Crucially, the look-and-feel of the interactive device is separated from its inter-
action rules. We can change one without affecting the other. In a professional
design environment, we might have different people working on each aspect sep-
arately. If changes are made to the look and feel, say, changing the color scheme,
the other people on the design project do not need to know; conversely, if the de-
vice specification is changed, the look and feel is automatically revised to work on
the new device.

In an ideal world, we would invent a language (no doubt in XML, so that other
programs could help us store and manipulate it) to describe the look and feel of
a device, just as we invented a language (actually a JavaScript data structure)
for specifying the state machine part of the device. Here we’ve simply written
JavaScript code to specify the look and feel. Although JavaScript is very easy to
fiddle with, it isn't a good language for a design tool to control.

Our makeForm() might be totally flexible, but our design framework has no
insight into how it works. For example, if we accidentally made the background
and the text colors the same, nothing in the form would be readable—and there
is no general way that we can program in checks like this that would work with
every device and every look and feel we used.

> Section 11.7.1 {p. 402) presents a case for adding look and feel information in
the framework (rather than into program code).

In a way, then, the possibility of improving the approach to look and feel, and
the advantages of doing so, is a small parable about the philosophy of the design
framework. The design framework as we develop it in this book only works with
interaction, not look and feel.

9.4.5 Initial checking

Creating the interactive form is only one part of initializing a device, and it is
useful to have a single function to do all the necessary work:

285

w— Chapter 9 A framework for design

function initialize(d)
{ d.state = d.startState; // start off the device in the initial state
makeForm(d) ;
other details to be added

It’s convenient to have a function displayState to display the state name by
writing the name of the state to the form field:

function displayState(d)
{ document.forms[0] ["display"].value = d.stateNames[d.state];
¥

The initialization function will call displayState(d) to make sure that the ini-
tial state is correctly displayed. A more exciting simulation of a device would
show different images for each state, rather than just writing strings of text—the
state description—to a field, as we’ve done here.

Now all that is needed is the next state function, which we’ve called press.
Notice how press uses the £sm table to work out the next state from the current
state and the number of the button the user has pressed. It then calls displayState
to show the user the new state name.
function press(buttonNumber)

{ device.state = device.fsm[device.state] [buttonNumber] ;

displayState(device);

} ~ %

It takes a little bit more tinkering to get it all perfect, but when all the details are
sorted out, we can run the lightbulb simulation as a self-contained web page.

9.4.6 Specifying a different device

Ornce we have a framework, changing or revising the device specification is easy.
The same Javascript code will work for any device: we can easily change the def-
inition of device to change its behavior. Here is the device specification for a
microwave oven:

var device2 = {
notes: "A basic microwave oven, based on a Hyundai model”,
modelType: "Microwave oven",
buttons: ["[Clock]","[Quick defrost]l","[Timel","[Clear]"," [Power]"],
stateNames: ["Clock","Quick defrost","Timer 1",
"Timer 2","Power 1","Power 2"],

fsm: [
[0,1,2,0,0],
[0,1,2,0,1],
[0,1,3,0,4], -
[0,1,2,0,5],
[0,1,3,0,4],
[0,1,2,0,5]
])

286

9.4. Prototyping as a web device

startState: 0,
action: ["touch","touched","touching"],
manual: ["has the clock running","doing quick defrost",
"using Timer 1","using Timer 2",
"on Power level 1","on Power level 2"
1,
errors: "never",
graphics:
};

nn

> We shall use this definition of a microwave oven as a frequent example. The
oven was discussed at fength in Jonathan Sharp's PhD thesis (see the further
reading at the end of this chapter, p.323); we use his exact definitions to
emphasize the generality of the approach.

If we just do device = device2 the framework will obligingly change from
simulating a lightbulb to simulating this microwave oven.

9.4.7 Using an image map

Our definition of the lightbulb included a picture file: instead of boring buttons, an
image and image map could be used to make the interaction simulation far more
realistic. If you want to use an image map so the user can click on regions within
the large picture that correspond to buttons or knobs, then the device specification
should include coordinates for its hot regions.

> An example of using an image map is given in section 9.5.1 (p.291), though
the image there is the device’s state transition diagram, not its buttons and
front panel.

9.4.8 Handling errors

Although the lightbulb has no scope for errors, the device specification had some
information about errors, namely, a string device.errors. This field could be
set to "beep" if we wanted the device to beep when there is an error, to "never"
if we wanted to ignore errors, or perhaps to something more complicated, say,
to identify some states with an error. For this book, I decided not to make error
handling a big issue for the framework, because the way errors are handled affects
almost all of the framework and makes it much more complicated than we need
to bother about here.

In fact, error handling is always tricky, and most interactive systems do it very
badly. If we put decent error handling into the framework, we’d only have to do
it once (perhaps leaving some details to the requirements of specific devices), and
then every device developed with it would “inherit” the careful error handling.

For some devices we might want to warn the user that pressing a button does
nothing. We could use code like this:

288

Chapter 9 A framework for design

if(state == device.fsm[device.state] [buttonNumber]
& device.errors != "never")
alert(device.action[2]+" "+device.buttons [buttonNumber]+
" doesn’t do anything in this state!");

Notice that we used the pressing device action from the device.action array.
The program will test whether device.errors != "never" again and again, so
better programming might call for writing:

var reportErrors = device.errors I= '"nmever";

if (reportErrors && state == device.fsm[device.state] [buttonNumber])

Remember that most errors we can report to users (while they are interacting
with the simulation) could have been detected before running the device. For in-
stance, if we think that buttons having no action is an error, then we can write
program to find all such cases automatically and then modify the design to elimi-
nate them before a user ever interacts with it.

9.4.9 Logging a commentary on user actions

The device specification includes a simple manual entry for each state as well as a
choice of words for what users do when they press buttons. Here’s one way to use
the manual part of the specification to provide a running commentary on the user
working the device:

function press(buttonNumber)

{...
document . forms ["info"] .comment.value = "You "+device.action[i]+
" tidevice.buttons [buttonNumber] +
", and "+(same? "nothing happened.":
"it is "+device.manual[device.statel+" now.");
¥

We could easily extend the framework to have a button that would
let the user write a description of any problem they have found, and we could
automatically annotate the user’s comments with the state where it was found
(and perhaps also the last few states so a designer looking at the report would
know how the user got there and experienced the problem).

9.5 Basic checking and analysis

Any device may be specified with accidental errors the designer hasn’t noticed.
One job for a framework is to perform checks that basic design errors have not
been made—this is an important part of design that is often forgotten in ordinary
programming, where the designer just writes code to do things and then has no
easy way to check what has been done.

9.5. Basic checking and analysis

If every program is written from scratch, the effort to do detailed checking will
rarely seem worthwhile: most of the useful checks are not particularly easy to
program (and it is always going to be easier to hope that the design is correct
than do hard work). Instead, in a framework, we only have to write the checking
program code once, and it is then always available for every device we want to use.
That is a very useful gain and a good reason to use a framework.

The first and simplest thing to check is that we have a valid finite state machine
with the right number of buttons. The properties to check are as follows:

B The basic fields are defined in the device specification. (In a strongly typed
programming language like Java this step is not be required.)

The number of buttons and the number of states conform to the size of the
various £sm, indicators, manual, action fields. (This is a check that both Java
and JavaScript cannot do without some explicit programming.)

B The startState and all entries in the £sm are valid state numbers. (Again, this
is a check that Java and JavaScript cannot do without programming.)

B Report on whether any states have no actions in them. This is generally an
error, except for special devices.

B Report on whether any states have only one action in them. This is an example
property of a device that may or may not be a design error; it may be deliberate
in some states for some devices, but generally it is worth highlighting for a
designer to take note.

> Pointless states can be identified visually from transition diagrams; they raise a
potential design issue discussed in section 6.3.3 (p. 184).

In JavaScript almost anything goes, so we have to check explicitly that strings
are strings, numbers are numbers, and so on. It is easiest to define some handy
functions to do this and to report errors as necessary:

function isString(s, name)
{ if(typeof s != "string")
alert(name + " should be defined as a string");

¥

function isWholeNumber(n, name, lo, hi)

{ if(typeof n != "number" || Math.floor(n) !=n || n < lo || n > hi)
alert(name + " (which is "+4n+

") should be a number between "+lo+" and "+hi);

290

Chapter 9 A framework for design

function isStringArray(a, name, size)
{ if(a == undefined)
alert (name+" field of device not defined");
if(a.length != size)
alert(name + " should be a string array, size "+size);
for(var i = 0; i < size; i++)
isString(ali]l, name + "["+i+"]");

The curious bit of code in'isWholeNumber, namely, Math.floor(n) != n,checks
that n is a whole number in the appropriate range, 1o < n < hi. The standard
JavaScript Math.floor function removes any decimal part of a number, so 2.3 be-
comes 2; of course, 2.3 is not equal to 2, so the function determines that 2.3 (or any
number with a fractional part) is not a whole number. We need to check whether
the type of n is a number too since Math.floor would fail (returning NaN—not a
number) if it wasn’t.

In Java, or another statically typed language, we could check this much more
easily by declaring things to be int—then the Java compiler would do the checks
with no further effort on our part, but JavaScript does not check whether a number
is an integer or a floating point number.

Next we want to report on any pointless states. This is just a simple matter
of examining each state and counting the number of transitions from that state
to other states. If a state has only one exit, then it possibly serves no purpose,
unless that state does something useful for the user as a side effect. In any case,
the designer should know the list of pointless states in order to review that they
do indeed have some use; otherwise, they should be deleted.
function reportPointlessStates(d)

{ for(var i = 0; i < d.fsm.length; i++)
{ var count = 0;
for(var j = 0; j < d.fsm[i].length; j++)
if(d.fsm[d][3] t= i)
count++;
if(count == 1)
alert("State "+d.stateNames[i]+" may be pointless.");

In a perfect world (that is, one where the framework is developed to be more
sophisticated and “industrial strength”) designers could record their decisions:
each state could have a flag to say that it is alright for it to be “pointless,” and the
check code would not report it again. Indeed, as soon as you write any program
code like this, many other checks and features will occur to you. For example,
why not check that the count of transitions from a state is at least 1, because surely
0 would be an error too? Checking that a single state has no exit is one problem,
which we could report with a simple change to reportPointlessStates, but what
if a set of several states have no common exit, but each state within the set does?
That’s harder to check.

> We will make more powerful checks like this later, in section 9.6 (p. 297).

9.5. Basic checking and analysis sl
T

With these functions, the checking is now straightforward:

function checkDevice(d)
{ // check strings
isString(d.modelType, "modelType");
isString(d.notes, "notes");
isString(d.errors, "errors");
isString(d.graphics, "graphics");
// how many buttons?
var b = d.buttons.length;
// how many states?
var s = d.stateNames.length;
isWholeNumber(d.startState, "startState", 0, s-1);
// check right number of things of right type
isStringArray(d.buttons, "buttons", b);
isStringArray(d.stateNames, "stateNames", s);
isStringArIay(d.action, "action", 3);
isStringArray(d.manual, "manual", s);
// check fsm
if(d.fsm.length != s)
alert("fsm does not have "+s+" rows");
for(var 1 = 0; i < s; i++)
{ if(d.fsm(i].length != b)
alert("fsm row "+i+" does not have "+b+" columns");
for(var j = 0; j < b; j++)
isWholeNumber (d.fsm[il [j1, "fsm["+i+"]["+j+"]1", 0, s-1);

}
reportPointlessStates(d);

Of course the checkDevice function can be applied to any device. This general-
ity is one of the huge advantages of using a framework: once you notice that one
device has potential problems you can identify (or even fix) automatically, mod-
itying your framework will avoid those problems in every other device too. The
same applies to all the analytical results. Good ideas can automatically be made
available to every device we want to try out.

> Chapter 8, "Graphs,” presents many ideas for measuring the effectiveness of
interactive devices, in particular whether the device structure has any dead-ends
and other traps for the user—issues that are not checked with the basic code
here.

Finally, we must not forget to actually check the device, by calling the function
checkDevice (device) on the device we intend to run.

9.5.1 Drawing transition diagrams

The easiest way to draw a transition diagram is to exploit an existing tool to do it
for us. There are several graph-drawing standards, and we just need use one to
generate a basic description of the finite state machine, and then run a program to

_ 291

292

Chapter 9 A framework for design

do the work for us. When drawing is automated, if we change our device specifi-
cation, the diagrams can be automatically updated—with speed and accuracy.

To draw diagrams, we will use Dot, an open source standard for drawing graphs,
Dot specifications can be read into many programs, which then do the details of
drawing, creating web pictures, PostScript, or whatever graphic formats we want.

If state a has a transition to state b, we write this in Dot by saying a -> b, and
if we want to say that this transition is caused by some action, such as pressing
a button (0n), then we tell Dot the transition has a named label by writing a -> b
[1abel="0n"]. .

Here is a basic description of the microwave oven (generated automatically
from the last example in our framework, on p. 286) in Dot:

digraph "Microwave oven" { /% basic Dot description */

0->0 [label="[Clock]"]; 0~>1 [label="[Quick defrost]"];
0->2 [label="[Time]"]; 0->0 [label="[Clear]"];
0->0 [label="[Power]"]; 1->0 [label="[Clock]l"];
1->1 [label="[Quick defrost]"]; 1->2 [label="[Time]l"];
1->0 [label="[Clear]"]; 1->1 [label="[Power]"];
2->0 [label="[Clock]"]; 2->1 [label="[Quick defrost]"];
2->3 [label="[Time]l"]; 2->0 [label="[Clear]™];
2->4 [label="[Power]"]; 3->0 [label="[Clock]"];
3->1 [label="[Quick defrost]"]; 3->2 [label="[Time]"];
3->0 [label="[Clear]"]; 3->5 [label="[Power]"];
4->0 [label="[Clock]"]; 4->1 [label="[Quick defrost]"];
4~>3 [label="[Time]"]; 4~>0 [label="[Clear]"];
4->4 [label="[Power]"]; 5->0 [label="[Clock]"];
5->1 [label="[Quick defrost]"]; 5->2 [label="[Time]"];
5->0 [label="[Clearl"]; 5->5 [label="[Power]"];

The JavaScript to generate this would be easy—just a couple of for loops to
run around the definition of device.fsm. However, if you run this through Dot,
it is immediately obvious that there are lots of ways to improve it; we'll make the
following improvements in our JavaScript:

B The states need names, and we could identify the start state specially.

B If a state has a transition to itself (that is, the action does nothing)—for instance
like 0->0 and 4->4 above—we needn’t show the arrow for the transition. This
simplification will remove a lot of clutter from the drawing.

& If the same action transitions between two states in both directions—for
instance like the pair 2->3 [label="[Time]"] and 3->2 [label="[Time]"]
above—then we can draw a single arrow but with arrowheads on both ends,
rather than two separate arrows.

B If several actions do the same transition, we draw them as a single arrow but
with a label made out of all the actions. Thus 1->1 [label="[Quick
defrost]"] and 1->1 [label="[Power]"] do the same thing and should be

9.5. Basic checking and analysis

ombined to make a single transition 1->1 [label="[Quick defrost],
power]"].

fsorts of ideas will occur to you on further ways to improve the diagram. Dot is
: phlstlcated language and can take lots of hints about what you want. You can
ange the color and shape of the states, the arrowhead styles, and so on. What is
ortant for us is that Dot draws a good enough diagram with no effort on our
1ot If we modify the finite state machine definition, the diagram will be updated
itomatically. Designers need easy and efficient tools, and this is one of them.
ere’s the JavaScript code to achieve the improvements mentioned above. I
on't describe the workings of the code in detail; if you copy it out (or copy it
m mitpress.mit. edu/presson), it will work and generate HTML, which you then
and-paste to a Dot program to draw the graph.

ctlon drawDot(d) // generate Dot code for any device d
.write("digraph \""+d.modelType+"\" {\n");
.write("size=\"4,4\";\n");

.write("node [shape=e11ipse,fontname=He1vetica,fontsize=10];\n")
.write("edge [fontname=Helvetica,fontsize=10];\n");
.write("start->"+d.startState+";\n");

.write("start [label=\"\",6style=filled,height=.1,");

.write(" shape=circle,color=black];\n");

s = 0; s < d.fsm.length; s++) // state names

.write(s + " [label=\"" + d.stateNames[s] + "\"];\n"); // *
= 0; s < d.fsm.length; s++) // single arrows

t =0; t < d.fsm.length; t++)

f(t !=s) // ignore self arrows

var u = true;

for(var b = 0; b < d.buttons.length; b++)

if(d.fsmls][b] == t & d.fsm[t][b] != s) // single arrows only
{ document.write(u? s + "->" + t + " [label=\"": "A\n");

= false;

document.write(d.buttons[b]);

}

if(tu) document.write("\"];\n");

(var's = 0; s < d.fsm.length; s++) // double arrows

or(var. t = s+1; t < d.fsm.length; t++)

‘ = true;

for(-var b = 0; b < d.buttons.length; b++)

if('d.fsm[s][b] == t && 4.fsm[t]1[b] == s)

- document.write(u? s + "->" + ¢ + " [dir=both,label=\"": " \\n");
= false;

_ document.write(d.buttons[b]);

~}

if(tu) document .write("\"];\n");

'ent‘write("}");

293

Chapter 9 A framework for design

After the definition of this function, call drawDot (device) in the JavaScript. Here’s
the diagram it draws for the microwave oven—with no further touching up:

[Clock],
[Clear]

Quick defrost

[Quick defrost]

Clock],
[Clear]

[Quick defrost]

Clock]
[Clear]

B

Quick defrost]

If you are keen, you can tell Dot to associate a URL with each state and then you
can click on the transition diagram (in a web browser) and make the device work
by going to the state you've clicked on. To do so, add the string

"URL=\"javascript:displayState(state = "+g+")\""

into the line marked * above—the URL runs the JavaScript to simulate the device.

This transition diagram is a detailed technical diagram that might be of interest
to the designer but is too detailed to be of much use to a user. Instead, we can gen-
erate code for Dot (or whichever drawing program we are using) to make things
more helpful for users.

The following Dot code draws a four-state transition diagram but uses pho-
tographs of the device taken when it was in each of the states, using Dot’s param-
eter shapefile to use a picture file rather than a geometric shape. Here the device

9.5. Basic checking and analysis

> Worcester Bosch Highflow-400 central heating system, and the transitions oc-
. when the user presses the button. A diagram like figure 9.3 (next page)
might be useful in a user manual.
Below, we've only shown the Dot code, not the JavaScript that could generate it.
ou would write some JavaScript that generated the Dot code for only part of the
system (that is, a subgraph), rather than the whole system, for instance, based on
iats of states that are needed to make each diagram to illustrate the user manual.

Iis

wgeft -> "Twice” —> "Once" -> "On" -> "Off";

[shapefile="0ff.jpg" label=""];

wice! [shapefile="Twice.jpg" label=" "1;

nce" - [shapefile="Once.jpg" label=""1;

n! [shapefile="0On.jpg" label=""];

The easiest way to extend the framework is to add a line to the device speci-
fication like stateNames: ["dim", "off", "on"l, but giving the file names (or
URLs) of images: stateImages: ["dim.jpg", "off.jpg", "on. jpg"], for ex-
ample.

_Instead of photographs or pictures, you could generate text into a template rep-
 resenting the device’s screen: you could have a function generateScreen() that
puts together the appropriate string representing the screen for any state. The
; possibilities are endless! «

tis worth emphasizing again (and again) that once you have set up your frame-
work, you can draw, analyze, and animate interactive devices automatically with
no further effort. And, the diagrams, analyses, or animations get modified auto-
matically (and correctly) with no further effort when you revise the device speci-
fication.

‘5 1> Instead of Dot, the JavaScript code can be modified to generate XML or
specifications in other languages just as easily from our framework. See 7.7
{p. 219) for more on SCXML, the XML for statecharts.

9.5.2 Adding more features

You can keep on adding features to the framework indefinitely. However, the
whole point of our approach is that the “way it works” features are clear and well
defined, and any cosmetic ideas—like pictures—can be added in independently.
Whatever fancy ideas we have to make the simulation more realistic, we should
keep at its heart the nice, elegant finite state machine simulator we can understand,
draw, and think about easily.

Very often we will want a state to encapsulate or do several things. Originally
we had a single function, press, to do everything, which has the huge advantage
of ensuring consistency, but now we want to be able to handle some states differ-
ently. We can either modify press so that it does different things in different states
or add a field (like stateNames) to list functions for each state.

We may want it to draw a picture, or we might want it to handle something
quite complex for the device like initiating a phone call.

295

Chapter 9 A framework for design

Figure 9.3: A state transition diagram, drawn automatically but using photographs of
the device in each of the relevant states. This sort of diagram can be used directly
in user manuals. The device here is a domestic central heating boiler, and the states
are hot water off, on twice a day, on once a day, or on continuously. Note that the
photographs show both the state indicator and the heater-on light.

One approach to handle state encapsulation is to arrange each state to call its
own JavaScript function. The function can then do what it likes in that state. In
many cases, simple modifications to press will seem easiest:

function press(buttonNumber)
{ state = device.fsm[device.state] [buttonNumber];
displayState(state);

switch(state)

{ case 1: dostatel(); break; // do something special in state 1
case 5: dostate5(); break; // do something special in state 5
default: // in this design, no other states do anything special

// but the default lets other states work consistently
// if we added code here for thenm

9.6. Finding shortest paths

Before long, this approach of overriding the definition of each state will get too
complex, especially if you are tempted to write all the code directly into press it-
self. Much better is to improve the way each state is defined centrally in the device
definition. One way to do it is to have a (potentially) different press function for
every state:

var device = {
notes: "Simple lightbulb, with dim mode",

stateNames: ["dim", "off", "on"],
stateFunctions: [stateLit, stateOff, statelit],

3
and press does it's basic work then dispatches to the appropriate state function,
statelit, state0ff, or whatever:
function press(buttonNumber)
{ device.state = device.fsm[device.state] [buttonNumber] ;
displayState(device);
device.stateFunctions[device.statel(); // do special action

¥

It's important that everything can be done from the same core representation
of devices. The JavaScript framework we’ve designed will work well even if we
change, perhaps radically, the definition of the device we are simulating or an-
alyzing. The interaction, as done here in Javascript, the drawings and all of the
analysis and manual writing is done directly from the same definition. We can
easily change the design (by editing the device specification) and then rerun the
simulation or the analyses. If the ideas sketched out in this chapter were used in a
real design process, it would permit concurrent engineering—doing lots of parts
of the design at the same time. Some designers could work on getting the interac-
tion right, some could work on the analysis, some could work on implementation
(like writing better code than we did just now), and so on.

9.6 Finding shortest paths

Designers want to know whether users can do what they want to, and if they
can, how hard it is. Let’s use the framework to answer these design and usability
questions.

The data structure device.fsm describes the complete graph of the user inter-
face design. Here is the data for the microwave oven again:

| Buttons —
States | 0 1 2 0 0
1 0 1 2 0 1
0 1 3 0 4
0 1 2 0 5
0 1 3 0 4
01 2 0 5

297

Chapter 9 A framework for design

This table, which is stored in device.fsm, tells us the next state to go to. Given
a button press (column) in any state (row), the entry tells us the next state to be in,
For example, the last line (which is state number 5) tells us that button 0 (which
is called and is the first column) would take the device to state 0—this is the
number in the first column of that row.

To work out how many button presses it takes to get from any state to any other
state, we need a new table that has rows and columns for states; each entry will tel]
us how many presses it takes to get from one state to the other.

By reading the state-button table above, we can work out the beginning of this
new table, which we will call matrix. If a button pressed in state i causes a tran-
sition to state j, then we want to have a 1 in entry matrix[i] [j] to indicate that
we know we can get from state i to state j in one step. Also, we know as a special
case we can get from state i to state i in no steps at all; so every entry matrix [i] [i]
should be zero. Any other entry in the matrix we’ll set to infinity because we think
(so far) that there is no way to get between these states.

Note that matrix has less information in it than device. fsm, since we have lost
track of buttons: the new matrix only says what next states are possible from a
given state, whereas device. fsm also says which button should be pressed to do it.

All the code that follows is written inside a function, shortestPaths(d), and
then shortestPaths(device) will work out the shortest paths for that device.
Throughout the following code, d will be the device we’re working on.

Inside the function, we first need a few lines to create a blank matrix of the right
size:
var fsm = d.fsm; // convenient abbreviation
var n = fsm.length; // number of states

var matrix = new Array(n);
for(var i = 0; i < n; i++) // create the 2 dimensional table
matrix[i] = new Array(n);

For a finite state machine of n states, if any shortest route takes more than n
steps it must be impossible: n — 1 steps is always sufficient to visit every state in
the machine (if it’s possible, that is), so we can define “infinity” for our purposes
to be any number 7 or larger. The value n 4- 1 will do nicely.

var b = £sm[0].length; // number of buttons
var infinity = n+l; // no route can take this many steps!

for(var i = 0; i < n; i++) // build one-step matrix
{ for(var j = 0; j < n; j++)
matrix[i] [j] = infinity;
for(var j = 0; j < b; j++)
matrix[i] (fsm(i] [j1] = 1;
matrix[i] [i] = 0; // zero steps to get from state i to itself

}

9.6. Finding shortest paths

The tricky line in the inner for loop, matrix[i] [fsm[i] [j]] = 1, says, “we're
in state 1, and we know button j gets us to state fsm[i] [j1, and therefore the
entry in the matrix for state i to state fsm[1] [j] should be 1.”

Here is what the cost matrix looks like after running that initialization code:

To state ...
From state ... 0 1 2 3 4 5
0: Clock 0 1 1 oo o o
1: Quickdefrost { 1 0 1 o0 o oo
2: Timer 1 1 1 0 1 1 o
3: Timer 2 1 1 1 0 o0 1
4: Power 1 1 1 o 1 0 o
5: Power 2 1T 1 1 o0 o0 0

I printed this table directly from the actual values in matrix, by using a couple
of for loops:
for(var 1 = 0; i < n; i++) // display matrix
{ for(var j = 0; j < n; j++)
if (matrix[i]1[j] == infinity)
document.write("∞ ");
else
document.write(matrix[i] [j]+" ");
document.write("
");

}

It would not be hard to use an HTML <table> to lay the data out nicely.

The symbol oo in the table (¢infin; in HTML) means for the time being we
don’t know a state transition is possible—that is, it might take an infinite number
of steps—to get from one state to another. More precisely, the matrix entries mean:
it can take 0 steps to get from one state to another (if they are the same state); it can
take 1 step to get from one state to another (if there is a single button press that
does it directly); or it can take more, which we’ve represented as co.

In short, for any pair of states, say / and j, the matrix tells us whether we can get
from one to the other (in zero or more steps). We now use a standard algorithm, the
Floyd-Warshall algorithm, that considers every state k and determines whether we
can get from i to j via the state k more efficiently. If we can goi — k — j more effi-
ciently than going directly from i — j, we record it in the matrix. Thus we expect
those oo values to reduce down to smaller values. The direct cost is matrix[i] [j]
and the indirect cost, via k, is matrix[i] [k]+matrix [k] [jl. Whenever the indi-
rect cost is better, we can improve the recorded cost. Here’s how to do it:
for(var k = 0; k < n; k++)

for(var i = 0; i < m; i++)

for(var j = 0; j < n; j++)
// replace cost of ij with best of ij or ikj routes
{ var viak = matrix[i] [k] + matrix[k] [j];
if (viak < matrix[i] [j])
matrix[i]l [j] = viak;

299

300

Chapter 9 A framework for design

At the end of running these three nested for-loops, the program has tried ever
way of getting from anywhere to anywhere. The inner two loops find the best way
of getting from state i to j via any intermediate state k, but the outer loop ensures
that we have tried all intermediate routes via 1 to k — 1 first. Thus when the outer
loop is finished, we know the best ways of getting between any two states via an
state 1...k, which covers all possible cases. This is sufficient to know all of the
best routes through the finite state machine.

Here is the result of running this code on our cost matrix:

| Tostate...
0 1 1 2 2 3
1 0 1 2 2 3
Fromi1 1 0 1 1 2
state | 1 1 1 0 2 1
11 2 1 0 2
1 1 1 2 2 0

We can write the same information as a mathematical matrix (just put it between
round brackets), which is highly suggestive of things you might want to do if you
know matrix algebra; however, to go there is beyond the scope and immediate
interest of this book.

> For more on matrices, see box 11.1, “Matrices and Markov models” (p. 382).

Note that there are no co (infinity) symbols in this shortest path table; this means
that (for this device) it is possible to get from any state to any other in a finite num-
ber of steps—thus this device is strongly connected. In particular, each entry in the
matrix gives the least number of steps it will take between two states (specifically,
matrix[i] [j] is the cheapest cost of getting from state i to state j by any means).

It goes without saying that our knowing the least number of steps to do any-
thing does not stop a user from getting lost or perhaps deliberately taking a longer
route. But we can be certain a user cannot do better than these figures.

In technical terms, the costs are a lower bound on the user interface complexity,
as measured by counting button presses. That is one reason why the costs are so
important; we have a conservative baseline to understand the user’s performance—
or lack of it—regardless of how good or sophisticated the user is they cannot do
better than these figures. If the costs turned out to be bad (or, more likely, some of
the costs were bad) there is nothing a user can do and nothing training can do; we
either have to live with a difficult-to-use feature (some things we may want to be
difficult), or we have to fix the design.

If we multiply the counts in the cost matrix by 0.1 second, we get an estimate
of the minimum time a fast user would take—and of course we could do some
experiments and get a more accurate figure than our guess of 0.1 second; then the
timings become a much more useful design measure.

9.6.1 Using shortest paths

Once we have worked out the shortest paths matrix, we know the most efficient
cost of getting from anywhere to anywhere. For instance, to get from Clock (state 0)

9.6. Finding shortest paths

|
EE——
to Power 2 (state 5) takes 3 button presses—that’s the number 3 in the top right, at

the end of the first line in the matrix above. Here’s the best route between these

two states:

1. Press to get from Clock to Timer 1
2. Press to get from Timer 1 to Timer 2
3. Press to get from Timer 2 to Power 2

In fact, a designer might be interested in all the hardest operations for a device;
for this device there are two, both taking at least 3 steps (the user will takes longer
if they make a mistake; the analysis shows they cannot take less than 3 steps). The
other worst case is getting from Quick defrost to Power 2. If the worst cases take
oo steps, then very likely there is something wrong with the design: some things
the device appears designed for are impossible to do.

Some devices—like fire extinguishers—may be designed to be used only once,
and then the designer will expect an infinite cost for getting back from the state
“extinguisher used” to “extinguisher not used.” But even then, it would help
the designer to have these states and problems pointed out automatically by the
framework. For instance, why not make the fire extinguisher refillable?

To find the best route, the correct sequence of button presses, not just the to-
tal cost to the user of following the best route, requires a few extensions to the
program.

We need to keep another table via[i] [j] to record the first step along the best
route i — j. Every time we update the cost of the route, we’ve found a better step.
Here are the details:

B In the original initialization of matrix we add an initial value to via:

for(var j = 0; j < b; j++)
{ matrix[i] [fsm[i] (1] = 1;

vialil [fsm[i1[j1] = j; // to get from i to £sm[il[j], press button j
}

B In the easy case of going from a state to itself, the first thing to do is to go there.

matrix[i] [i] = 0;
vial[il [i] = i;

B In the code that updates matrix, if it is better to get from i to j via k, we replace
the first step of i — j with the first step of i — k — j, which is already in
vial[i] [k]:

var viak = matrix[i] [k] + matrix(k]([j]l;
if(viak < matrix[il([jl)

{ matrix[i] [j] = viak;

vialil [j]1 = vial[i] [x];

}

301

M«_‘

302

Chapter 9 A framework for design

B Finally, after finding all the shortest paths, to get the best route between any
two states i — j, the following code will print out the route:

var start = i;
var limit = O;
while(start != j)
{ var nextState = device.fsm[start] [via[start] [j1];

document .write("Press "+device.buttons[vialstart] [j1]

+" to get to "+device.stateNames[nextState]+"
");
start = nextState;
if(limit++ > n) { document.write("?"); break; }

}

This code uses the variable 1imit to ensure that we don’t try to solve an
impossible task—in case it is called when the route has the impossible length
0. Recall that no route in a finite state machine need take longer than the

number of states; otherwise, it is going around in circles (it must visit some
state twice) and therefore can’t be a shortest route to anywhere.

The code in the last step above prints out the sequence of user actions a user needs
to do to get a device from state i to state j. If we put that code inside a couple of
loops to try all values of i and j we can find out how often each button is used.
We could then design the device so that the most popular button (or buttons) are
large and in the middle. Or we might discover that the popularity of buttons is
surprising (some buttons may never be used on shortest paths, for instance), and
then we’d want to look closer at the device design. Here’s one way to do it:

var bcount = new Array(b); // an array with one element per button
for(var i = 0; i < b; i++)
becount[i] = 0;
for(var i = 0; i < nj; i++)
for(var j = 0; j < mj j++)
{ var limit = 0, start = 1i;
while(start != j)
{ var nextState = device.fsm[start] [vialstart][j1];
beount [via[start] [j]J++; // count how often buttons are used
start = nextState;
if(limit++ > n) break;
¥
¥
for(var 1 = 0; i < b; i++)
document .write (device.buttons [i]+" rated "+bcount[i]+"
");

9.6.2 Characteristic path length

Now that we have worked out shortest paths, the characteristic path length is just
a matter of finding their average. Here’s how, printing the results in HTML:

9.6. Finding shortest paths

var sum = 0, worst = 0;
for(var i = 0; i < n; i++)
for(var j = 0; j < n; j++)
{ sum = sum+matrix[i] [j];
if (matrix[il [j] > worst)
worst = matrix[i][j];
¥
document.write("Characteristic path length "+(sum/ (n*n)) +"
");
document.write("Worst case path length "+worst);

For our microwave oven example, the characteristic path length is 1.22, and the
worst case is 3.

> The characteristic path length was introduced in section 8.9 (p. 264).

Since the microwave oven happens to have as many buttons as states, the char-
acteristic path length could have been as low as 1, with a worst case of 1 too.
Perhaps the designer should take a closer look to see whether the extra effort for
the user is justified by greater clarity or other factors.

9.6.3 Eccentricity

The eccentricity of a state measures the cost of the worst possible thing you could
try in that state, that is, getting to the most distant state you could get to from that
state.

In graph theory terms, the eccentricity of a vertex is the maximum distance it
has to any other vertex. The diameter and radius of a graph are then defined as
the largest and smallest, respectively, of the vertex eccentricities. Here’s how to
find out all the information:

var radius = infinity, diameter = O;
for(var i = 0; i < n; i++)
{ var eccentricity = 0;
for(var j = 0; j < n; j++)
if(matrix[il[j] > eccentricity)
eccentricity = matrix[i][j];
document .write (""+d.stateNames[i]
+" eccentricity is "+eccentricity+"
");
if (eccentricity > diameter)
diameter = eccentricity;
if(eccentricity < radius)
radius = eccentricity;

¥
document.write("Diameter (worst eccentricity) = "+diameter+"
");
document.write(" Radius (least eccentricity) = "+radius+"
");

The designer will be especially interested in any states that have a very highora
very low eccentricity; the extreme values might indicate an oversight, or, of course,
they may be intentional—sometimes a designer wants to make certain things hard
to do.

303

Chapter 9 A framework for design

For the microwave oven, it turns out that the diameter is 3, and the most eccen-
tric states are Clock and Quick defrost, and in both cases the worst thing to try to
do is to change to the state Power 2.

Clock is a state used for setting the clock, so you'd expect to have to get out of
clock setting, start power setting, then set Power 2, so a shortest path to Power 2
of 3 doesn’t sound unreasonable. If a user is doing a Quick defrost, they are not
very likely to want to ramp up the power to its highest—it’s easy to burn stuff on
the outside but leave the middle frozen. So we have a no reason to worry about
the two largest eccentricities.

0.6.4 Alternative and more realistic costs

We’ve described shortest paths as a way of finding the most efficient route, or
path, from any state to any other. By “efficient” we meant using the least number
of button presses, or user actions of some sort if they aren’t button presses. It's time
to find out whether we can be more accurate—and whether being more accurate
helps us design better systems.

If buttons are close to each other, a human can operate them with one hand. If
the buttons are several meters apart, then they will be much harder to use; in fact,
if they need pressing simultaneously, two users might be needed or a user might
have to put their feet on a bar and touch two distant buttons to guarantee their
limbs are kept out the way of the dangerous machinery.

To be more realistic, we should include more information in the design frame-
work about the device, such as button and indicator sizes and positions. Secondly,
we should get some data from real people about how they perform with different
representations of devices.

Instead of measuring how long users take, which requires an experiment, it is
possible to estimate how long they take from theory. For each action on a push-
button device, the user has to do three things: decide which button to press, move
their fingers to get to the button, and then press the button. The Hick-Hyman
law says roughly how long a user will take to decide which button to press: the
time is a + blog(N + 1), where N is the number of choices the user has to decide
between—here, it will be the number of buttons. The Fitts law says how quickly
the user can move to hit the button, depending on the distance to move and how
large the target button is: the time for a movement is ¢ + dlog(D/W + 1), where
D is the distance to move and W the width of the button measured in the direc-
tion the finger is moving. If the device has tiny buttons, then you must also take
account of the size of the user’s fingers.

Start
7

9.6. Finding shortest paths

[Box 9.1 Facilities layout Most problems have appeared under different but more-or-less
equivalent guises before. Improving the design of interactive devices by looking at shortest
paths and user data is "the same” as the facilities layout problem. You have some facilities,
like workstations in a factory, and you want to minimize the cost of people carrying stuff
around the factory.

How people can move stuff around the factory is a graph. You collect data on where
people go and how often, you work out the shortest paths, and you then move the facilities
around to reduce the overall costs of moving things. This problem is very well studied; it
is estimated that about 10% of a nation’s industrial effort goes not into just moving stuff
around, but into rearranging facilities or building new ones to move stuff around!

It's the same problem as deciding where to put interesting states in a state machine, or
deciding where to put interesting pages in a web site, if you know shortest paths and have
some usage data. It turns out that finding a solution to the problem is NP-hard, which is
Just a fancy way of saying nobody knows a good way of solving the problem.

It's nice to know that re-designing an optimal web site, or re-designing an optimal device,
based on user data is NP-hard, for this is effectively saying it's a very hard job, however you
do it. On the other hand, since the problem is so hard, if you do not use a systematic way
of re-design—using one of the standard algorithms for solving the problem—then it is very
unlikely to be much of an improvement.

The constants a4, b, c, d are usually found from experiment, and depend on the
users, their age, fitness, posture, and so on.* The total time to do anything is the
sum of these two laws for each user action required. Whatever the exact values,
we can immediately see that there are some generic things that can be done to
speed things up. We could:

B Make buttons larger, so W is larger.
B Make buttons closer, so D is smaller.

B Reorganize buttons into a better layout, to reduce average distances.

> See box 9.2 (p.310) for an example of this idea.

B We could reduce N, for instance by illuminating only active buttons, or we
could use a dynamic approach to showing buttons, say using a touch screen
that reconfigures itself. However, if the screen changes, although N is reduced,
we would find that the “constants” increase, as the user has a harder job to
decide which button to press—they cannot learn a fixed layout.

> llluminating active buttons is discussed in section 11.3.1 (p.383).

B On devices with touch-sensitive screens that show buttons, we can change the
size of buttons depending on what state the device is in. For example, making

*Often these laws are given differently, using logarithms to base 2. Since the constants are experimen-
tally determined it does not matter what logs are used.

305

306

Chapter 9 A framework for design

the buttons that are used at the beginning of any sequence of user actions
larger will help the user notice them (as if they are lit up).-

B We could change the constants by “modifying” the user rather than the device:
we could train the user to be faster, or we could select users who were good at
our tasks.

B We don’t always design by minimizing costs; we could try to increase costs
instead. If the user is using a gambling machine, we may want the users to
spend as long as possible losing money. Or, although we know that hitting the
big red button switches a device off immediately, it may not be
the best way of switching it off normally; we should make its cost higher, for
instance putting it under a protective cover.

Programming Fitts Law times

The design framework could be extended to allow designers to edit the look and
feel of a device in a drawing program. As the graphic designer moves and changes
the sizes of buttons, they would get continuous feedback from the design frame-
work analyzing its performance. Such ideas would take us beyond the scope of
this book, but we'll explain how to get the framework to use Fitts Law (or any
other formula) to estimate how long a user takes to do tasks. To do this, we need
to extend the framework with details about where buttons are and what sizes they
are. For simplicity, we'll assume all buttons are circles of radius r and they are on
a flat surface.

If but tonLocation is an array of (,y) coordinates, the following function called
Fitts, converts the distances between buttons into the time, in seconds, Fitts Law
says it will take a user. Fitts Law doesn’t need to know the units of measurement,
but the radius and (x,) coordinates must be given in the same units. (Which just
shows Fitts Law is an approximation: if the distances are huge, then Fitts Law will
underestimate the times.)

The following code uses constants typical of typewriter keyboard speeds:
function Fitts(b, ¢) // time taken moving between buttons
{ var dx = device.buttonLocation[b].x-device.buttonLocation[c].x;

var dy = device.buttonLocation[b] .y-device.buttonLocationlcl.y;

var d = Math.sqrt(dx*dx+dy*dy); // distance to move

if(d<xr |l == ¢) return 0.14; // a double tap

return 0.16+0.07+*Math.log(d/device.r+1); // index finger

The code shows Fitts Law numbers estimated for index-finger movement; use
0.18+0.09%Math.log(d/device.r+1) for slower thumb movement.
If we are not sure what constants to use the function Fitts can be modified to
return Math.log(d/device.r+1)/Math.log(2), and it will then be returning the
index of difficulty (IOD), which is a number representing how hard something is
to do, without regard for the exact timing.* Then the algorithm will then return not

* The index of difficulty is properly measured in bits, and hence needs log,.

9.6. Finding shortest paths

Figure 9.4: How a single-state (state 3, left) with two transitions to it (a and b) would
be replaced with four states (right), each “remembering” the original state’s different
ways of getting to it. Now the transitions "know" how the user's finger has moved: for
example, transition c from state 3 : a required the user to move their finger from button
a to button c. In this example, two of the new states (3 : b,3 :) are unnecessary as
there is no way to enter them. {For clarity, the righthand diagram does not show all
transition labels, and states 3 : 4 and 3 : b will also have more transitions to them than
are shown.)

best times, but best measurements of the index of difficulty, depending on button
layout and the device interaction programming.

We can'’t reuse the shortest paths algorithm directly because the time it takes a
user to get from one state to another depends on what the user was doing before
they got to the first state. How long it takes to get from state to state depends on
the distance the user’s finger moves. Pressing button (a), say, got the device into
state 2, then the user moved their finger from (a) to press (8] to get the device to
the next state. The shortest path algorithm assumes each action (arc) has a fixed
cost—but to use Fitts law we need to know which button the user pressed to get
the device to the first state: for instance, the physical distance (&) to (), if (A} got us
to state 2, or the physical distance (T) to (), if (C) got us to state 2. Somehow the
states need to know which button the user pressed to get there.

Suppose the device has got B buttons and N states. We create a new “device”
with B states for each of the original device’s states. Give the new states names
like s : b, so that in the new device the state s : by represents entering the original
device’s state s by pressing button by—thus we have states that record how the
user got to them. If on the old device pressing button b; went from state s to state
t, then on the new device state s : by will go to state ¢ : by. This transition will take
time according to the Fitts Law to move the finger from the location of b to the
location of b1, and we now have enough details to work the timings out.

307

308

Chapter 9 A framework for design

To program this in JavaScript, we give the state we've called s : b the unique
number sB + b. The code starts by creating a table of all weights for all the new
state transitions, first initializing them to co:

var v = new Array(NB);
for(var i = 0; i < NB; i++)
{ wlil = new Array(NB);
for(var j = 0; j < NB; j++)
wlil[j] = infinity; // default is mo transition

Then we construct the new “device”:
for(var i = 0; i < N; i++)
for(var b = 0; b < B; b++)
{ var u = device.fsm[i] [b]; // b takes us from i to u=fsm[i] [b]
for(var ¢ = 0; ¢ < B; ct++)
// we’ve just pressed b, now we press c
// pressing c takes us from u to fsm[u][c]
w[u*B+b] [device.fsm[u] [c]*B+c] = Fitts (b, c);
}

We can now use the familiar Floyd-Warshall algorithm to find fastest paths.
This part of the code works exactly as before—though for simplicity here we are
not recording the actual paths taken.
for(var k = 0; k < NB; k++)

for(var i = 0; i < NB; i++)

for(var j = 0; J < NB; j++)
ifC wlil el+w k] (3] < wlill3])
wlil (3] = wilil [kJ+w(k] (3]

> The Floyd-Warshall algorithm was introduced in section 9.6 (p.299).

We’ve found fastest paths but paths in the new “device.” We need to translate
back to the original device: that is, all states s : b need to be called s whatever
button got there. We create a new table v for the results:

var v = new Array(N);
for(var i = 0; i < N; i++)
{ v[i] = new Array(W);
for(var j = 0; j < N; j++)
v[il[j] = infinity;
¥
for(j = 0; j < NB; j++)
for(k = 0; k < NB; k++)
if(v[Math.floor(j/B)] [Math.floor (i/B)] > wljllk])
v[Math.floor (j/B)] [Math.floor (k/B)] = wijlIx];

We now have a table with entries v[i][j] that gives the best time in seconds
it takes a user to get from state i to state j. Note that the timing is only useful
for pushbutton devices; common devices like cameras, with knobs and sliders;
will require slightly different treatment than the “raw” Fitts Law. Devices like the

9.6. Finding shortest paths

Time in seconds

.
T T T T T T T ¥ T T T — >

5 10

Action counts

Figure 9.5: A plot of Fitts Law timings (vertically) against button press or action counts
(horizontally) for all possible state changes on the PVR used in section 10.3. Button
counts are closely proportional to user times.

Points close enough to overlap are rotated, like x * # # » - -- @ —the more points
at the same coordinates, the darker the blob. The graph also shows a best-fit line
0.21+0.16x.

radio—section 3.10 (p. 80)—require the user to spend a significant time interpret-
ing the display, and Fitts Law does not consider that either. If your device takes
many button presses to change states, Fitts Law will become inaccurate as it in-
creasingly under-estimates times, ignoring the user checking the device feedback
and thinking.

In figure 9.5 (this page), I've used the program code and shown Fitts Law tim-
ings plotted against button counts to do the same tasks. As can be seen, the timings
and counts are closely related (at least for this device), so button press counts—
which the basic shortest paths algorithm gives directly—will be sufficiently accu-
rate for most interaction programming design issues (in fact, as accurate as you
could expect from either experiments or from Fitts Law alone). However, if you
wish to design button layouts, the plot also shows us that user timings can vary
by a factor of two or more simply because of the time taken for finger movement;
for button layout, then, Fitts Law can be very helpful.

Familiarity

Another useful cost we can explore is familiarity. There are many ways to repre-
sent familiarity, but suppose we keep a matrix inside the interactive device, ini-
tially with the one-step costs: 1 if a transition is possible, 0 if it is not possible.
Now, every time the user does something, the corresponding transition “cost” is

310

Chapter 9 A framework for design

Box 9.2 Button usage Finding the absolutely best layout of buttons is hard, especially
all possible button positions are considered in all possible layouts (rectangles, circles,
hexagons ...). It may be just as useful to find out which are the most used buttons.
A model of the JVC HRD580EK PVR suggests that buttons are used very differently:

Button press Relative use Button press Relative use
or action on shortest paths or action on shortest paths

67.36% (1876) 2.87% (80)
15.44% (430) 1.94% (54)
8.58% (239) 1.94% (54)
5.03% (140) insert tape 1.87% (52)

The seems to be used excessively: it has too many uses in this design—surely, there
aren't that many ways of recording? Thus, some of its uses might be reconsidered and
handed over to another, possibly new, button. Or, if we do not change the meaning of the
button (which would change the figures in the table), it should be physically positioned in
the centre of the buttons, to reduce hand or finger movement times.

Inserting a tape is used 1.87% of the time, which also seems-high—surely there is only
one thing inserting a tape should do? As it happens, on the JVC PVR, inserting a tape also
switches the PVR on if it is off, so inserting a tape is faster than switching on, then inserting
a tape. Again, analysis questions a user action possibly having too many uses.

> The JVC HRD580EK PVR is used in section 10.3 (p.330). The path length data is
illustrated in a bar chart in figure 11.4 (p.381).

incremented. The matrix counts how often a user does something; we can assume
counts indicate how familiar the user is with each action. Now maximum cost
paths indicate paths that the user would tend to take themselves. We can find
solutions that are not fastest but—we hope—are most familiar. Alternatively, we
might want to train the user to be proficient in all ways of using a device; then we
would want to recommend they learn and do things they are not familiar with.

If the user was a pilot, nurse, or fireman, then they might be required to be fa-
miliar with every operation of the device; the ideas here then allow the framework
to tell them what they have missed or not yet done enough of. Perhaps their pro-
fessional license requires them to do a certain sort of procedure every year or so;
if so, we can check, and tell them what they have missed.

These ideas give advice depending on what users do. Instead, we could fill the
cost matrix with how experts think the device should be used. In this case, the
shortest paths will automatically give expert advice.

> More uses of costs to use in products (rather than just for the designer to
analyze) are discussed in section 10.7 (p.351), particularly 10.7.5 (p. 358),
and 11.5 (p.392).

9.6. Finding shortest paths

9.6.5 Task/action mapping

The shortest paths program finds paths between states. Unfortunately, the user is
not interested in states as such; states are abstract things inside the device. The
device can do what it likes, as it were, but the user is interested in achieving things
in the world. More specifically, the user has goals, and they want to undertake
tasks to achieve their goals.

Of course, this is a gross simplification; a user’s goal might be to have fun and
there may be no specific task associated with that experience. But for a great many
cases, the user will have goals—such as getting a device they are using to do some-
thing important for them—and their task then amounts to doing the actions that
get the device to actually be in the right state to have done whatever they wanted.

The general question is to find the best way of getting from the set of states the
device may be in (they need not know specifically) to the set of states that achieve
the goal the user wants to achieve (they may not know these specifically either).
The user’s goal may further require that certain intermediate states are visited. For
example, a user might want to get a CD player from any state (however it was last
left) to playing a track on a new CD. What should they do?

The standard term for doing this is called solving the task/action mapping
problem. Given the task (or the goal that ends the task), how do we map that
into the actions the user should do?

What the user should do is spelled out by the program; what the program
should do and how it works is our present interest. Clearly, there are as many so-
lutions to the programming problem as there are different sorts of user problems
that we might want to handle. The best way of starting is to introduce indicators
to the device framework, which indicate things the user is particularly interested
in. Indicators, then, represent sets of states. For example, a device can be off in
several ways—with a CD in it or no CD in it, say—but the user knows it is off. We
can then have an indicator off, to represent the set of (in this case) two off states.

Users then specify their goals in terms of changes to indicator settings. The
previous task we described is simply to go from (any state) indicating off to (any
state, preferably the nearest) indicating play.

> Details of how to do this sort of thing are given in section 10.7 (p. 351), where
we will examine how to solve problems for microwave oven tasks and video
recorder tasks. Indicators are introduced in section 8.1.3 (p. 232); see also
section 10.3.2 (p. 334).
Once we have some program code to solve user problems, it can be used in
four quite different ways:

B For the user, as we already know, it can solve particular problems.

B For the designer, it can solve every user problem and then generate statistics,
such as the average and worst-case costs for the user.

B For the technical author (or the designer), who writes user manuals and
perhaps interactive help for users, it allows them to review all sensible
solutions to problems so they can be written up accurately.

311

312

Chapter 9 A framework for design

& User manuals can be generated with automatic help; see section 11.5 (p. 392).

B The fourth point of view is the most interesting: how hard is it for us to work
out how to write a program to solve the user’s task/action mapping problems?
The harder it is for us to solve the problem, then certainly the harder it will be
for users (who know less about the device than we do). We may find that our
programs need hints; if so, so will the users.

In some cases, we may find that the task/action mapping problem is very hard
to solve (it might take exponential time to solve, or worse); then we really need
to redesign the device—because if a problem is theoretically that hard, the user
must find it hard too.

> The key importance of the designer getting insight into the difficulty (or ease)
of the user solving problems is part of the computer science analogy, which we
introduced in section 5.7 (p. 157).

9.7 Professional programming

Our style of defining a device is very simple, so there are inevitably more “profes-
sional” ways of doing it. This chapter is not about how to program. I want you to
know, rather, what is possible and easy to do—and the automatic benefits of being
simple and systematic. If we had used a more sophisticated way of programming
in this book, we could certainly handle much larger device specifications more
easily and more reliably, but then too much text would have been taken up with
explaining sophisticated programming ideas; we would have lost the simplicity at
the core of the approach.

Here are some suggestions for improving the framework, depending on what
you want to do:

B With lots of states, keeping track of the differences becomes impractical, but to
fill in most array fields in device you have to be aware which state is which.
Instead, a single state field should be an array of objects. Thus each state says
what its name is, and what its user manual text is. Instead of writing,

var device = {

stateNames: ["dim", "off", "on"],
fsm: [[1, 2, 01, [1, 2, 01, (1, 2, 011,

manual: ["dim", "dark", "bright"],
};

you would write more like this (shown on the next page):

9.7. Professional programming

var device = {
states:
[{name: "dim", fsm: [1, 2, 0], manual: "dim"},

{name: "off", fsm: [1, 2, 0], manual: "dark"},
{name: "on", fsm: [1, 2, 0], manual: "bright"}],

3

This way of coding brings everything in each state much close together and
therefore helps you get the correspondences right. If you know JavaScript, you
can use object constructors rather than repeatedly writing out name, fsm, and
manual.

The finite state machine field, £sm, is defined using state numbers, and it is
sometimes too easy to mix up state numbers. Instead, every reference to a state
should be to its name. If you want to do this, you will probably want to
preprocess the device to build an internal specification that uses numbers
(because they are much more efficient when the device is running).

> Section 9.5 (p.288) gives other ideas for preprocessing the device specification
to improve its quality.

Strings are readable and make a device specification very clear, which is why
we're using them a lot in this chapter. But, what happens if you mistype a
string? The device would misbehave. If you are using a typed language like
Java, there are many better approaches. You could have a state constructor, say,

State sOff = new state("off", "dark");

The advantage is that Java will only let you use s0ff where you need a state,
and you can only use states in those places. You could not get a button and a
state confused. (Here you'd need to add actions to each state separately, say,

s0ff.addAction(button, nextstate).)

If you spend another half hour or so programming, you will be able to
generate code to work on hardware (or Java, or whatever) from the JavaScript
framework we’re using, and you will then be able to get the real device to
work straight from the framework.

It is easy to add special-purpose features to the framework, but we won’t dwell
on them in this book. For example, the framework can be extended to be a
pushdown automaton in which each user action stores the last state in a stack
(in JavaScript, it would be an array, using the methods push and pop). The
button is then programmed to pop the stack and restore the last state.

> Section 10.8 (p.362) suggests how to implement consistent user interfaces by
using program code to define interaction features.

313

Mﬂﬂ_“‘

314

Chapter 9 A framework for design

B Our framework has finite state machines as explicit data structures. It's tedious
writing down finite state machines like this—every bit as tedious as drawing
state transition diagrams. Just as statecharts improve the visualization of state
machines, there are many programming language approaches (including
SCXML, the XML statechart notation) that improve the clarity of finite state
machine specifications.

> You can use JavaScript as a specification language to build the finite state
machine directly; we show how in section 9.8 (p.316). We discuss more general
approaches to design tools in section 12.6 (p.428). For other ideas extending
the framework see section 9.5.2 (p.295).

9.7.1 Going further: JSON

Our framework is written in JavaScript, which may give the impression that it is
not as serious as, say, a framework written in Java or C++. In fact, our framework
will work in many other languages directly, and therefore is as serious as any other
approach. JavaScript has inspired the JavaScript object notation, JSON, which uses
what is essentially JavaScript notation to define objects in a portable way that can
be used in a very wide variety of languages, including ActionScript, C, C++, C#,
Lisp, Haskell, Java, JavaScript (of course), Perl, PHP, Python, Ruby, and Tcl/Tk.

JSON is exactly our framework notation, except that JSON'’s field names have
to be written in quote marks—although most JSON systems don’t worry unless
the field names need funny characters (and none of ours do). So when we wrote
definitions of deviceslike {fsm: [[0,1]1,[1,113...}, all weneed todois change
them to {"fsm": [[0,1],[1,111...} and they are then proper, strict JSON.

If you want to program using our framework in Java, get hold of the Java-JSON
package, use it to read in the JSON notation, then you have objects in Java that you
can use exactly as we have been doing in this book.

> You can get more details from www.json.org

9.7.2 Going further: Phidgets

Our framework works nicely in web browsers on any platform, which is an advan-
tage of using JavaScript, but you might want to build real systems, not on-screen
devices restricted to a web browser style of interaction.

Phidgets are a very nice way to get into programming hardware. Phidgets are
so-called because they are the physical equivalent of on-screen widgets—buttons,
text fields and so on.

Phidgets allow you to build user interfaces using LCD displays, LED indicators,
buttons, knobs, sliders, touch sensors, RFID tags, motors and so on—as well as
relays, so you can control real systems. The touch sensors can be placed behind
paper you have printed with button designs or controller layouts, so you can get
realistic prototype designs to work very easily.

9.7. Professional programming

Figure 9.6: A Phidget, connected to a USB port on a PC, simulating a device display.

Phidgets use USB interfaces and are well supported. So, for example, you could
use JSON to get our framework into ActionScript, C or Java, then use the Phidget
libraries provided for these languages to run the hardware. Figure 9.6 (this page)
shows a simple user interface built out of Phidgets, running a syringe pump user
interface written using this book’s framework.

> You can get more details from www.phidgets.com

9.7.3 Going further: web sites, XML and so on

In our framework, a state is “just” a name. We can add more attributes to states,
such as manual sections, images, indicators, and so on indefinitely, but each exten-
sion makes the framework more complex. A neater and more general extension is
to make states themselves HTML or XML pages (the state names could be URLs).
Now a state can not only display different images and text, but a state can have
internal programmed activities as well—anything an HTML page can do, even
be another interaction framework. In fact, we have obtained a hierarchical FSM;
where the states at one level are FSMs in their own right at the next lower level.
For example, one state might allow the user to enter numbers for, say, selecting
a CD track or dialing a phone number, but at the higher level of the FSM, these are
details that are abstracted away. Thus we get the advantages of a nice, clean FSM,

315

316

Chapter 9 A framework for design

as well as the advantages of arbitrary programming—or even nested FSMs—that
can do anything in any state.

If you wish to build hierarchical FSMs like this in Java/C++/C#, there are many
ways of rendering sub-FSMs; if you continue using JavaScript, you can most easily
use HTML frames to maintain and carry the simulated device’s state variables (like
the selected CD track number) from one sub-page to another.

9.8 Generating device specifications

A problem with our framework is that device designs look like so-much JavaScript
and numbers. To designers, interactive devices just don’t look like that! We need
more conceptual ways of representing devices that are easier to think about.

How can we go from conceptual designs to a table of numbers that represents a
finite state machine? For very simple devices, such as this book has space to cover,
we can construct the framework by hand, and then check it. But for large devices,
we have a problem.

Either you need to use a design tool that generates framework specifications
(and there aren’t any yet) or you could use whatever approach you've always
used but add program code that generates data that can input to our framework.
For example, you might build a conventional device in Java or C++, and write
in it calls to generate framework data, perhaps in JSON. This way, you get the
benefits of your usual approach plus all the analysis and benefits our framework
provides. You might consider translating the code in this book so that the frame-
work’s benefits can be obtained within the same program; there’s no need to use
JavaScript.

Another way is to write a program to construct the finite state machine. Now,
you can use the high-level features of your programming language to specify the
structure of the interaction programming.

Figure 9.7 (facing page) shows an electric drill, which is a very simple FSM, but
with an interesting structure. The drill has 8 user actions, twisting knobs, pressing
buttons—not counting “indirect” actions such as removing the battery or letting
it go flat. The finger trigger controls the drill motor. On the assumption that we
are interested in examining how the drill behaves at T different speeds, we need
to model T different trigger positions. The drill then has 216T possible states—the
216 comes from the combinations of knobs and buttons. However, some states are
disallowed by the physical construction of the drill: for instance, when it is locked
off, the trigger must be out and the drill cannot be running. More accurately, then,
there are 144T + 72 possible states. In our program below, we will take T = 2, that
is, we will only distinguish between the drill running or not running, not the exact
speed it is running at.

With T = 2, the drill model has 360 states. In one state, for instance, it can be
running clockwise in second gear in hammer mode. There are 8 different actions—
increasing the clutch, decreasing the selected gear, and so on—so the drill could
have 360 x 8 = 2,880 transitions. In fact it only has 1,746 transitions. The “miss-
ing” transitions are impossible because of physical constraints in the design. For

9.8. Generating device specifications

Figure 9.7: An unusual device to consider as an interactive device, but a finite state
machine nevertheless, with 360 states—more if we distinguish the motor running at
various speeds. The device can be specified using a statechart or program—see fig-
ure 9.8 (p. 319) for the statechart and section 9.8 for the program.

example, you can only change direction from clockwise to anti-clockwise if the
motor is not running.

The best way to define this device in the framework is to write a program that
provides the details. It would be far too tedious and error-prone to write out ev-
erything by hand. Every physical constraint will appear in the program as an
explicit test.

Interestingly, the user manual for the drill (a DeWalt DC925) only mentions one
of the constraints—it says you must not change gear while the motor is running.
Trying to specify this device as a FSM therefore highlights a possible design issue:
should the gears be improved so that nothing need be said in the user manual?
Would it be a better tool if the gears were modified? It would certainly be easier to
use, and with a reduced risk to the user of wrecking the gearbox, which the manual
currently warns about. So, even without doing any analysis with the framework,
the discipline of being explicit about the interaction design of the device has raised
a design issue.

What follows is one way to program it in JavaScript. First we need state num-
bers for every possible state the drill can be in. The drill allows the user to set the
geazr, the clutch, and so on, to various settings:
var clutchSteps = 24, directionSteps = 3,

gearSteps = 3, triggerSteps = 2;

// all values are numbered from zero
// e.g., the program uses 0,1,2 for the drill’s gears 1,2,3

317

318

Chapter 9 A framework for design

function conceptualState(trigger, clutch, gear, directionm)
{ return trigger+triggerSteps*(clutch+clutchSteps*

(gear+gearSteps*direction));
}

Given some user settings, for example that the clutch is in position 3, we use
conceptualState to generate the state number, which will be a number from 0
to 431. We allow for 432 states because, so far in the programming, we are not
worrying about the physical constraints that disallow some user actions in certain
states.

In our framework, each state needs a name and we can generate these automat-
ically:

function stateName(t, c, g, d)

{ var n;
n =t == 1? "running ": d == 17 "": "stopped ";
n += d == 0?7 "reverse, ": d == 17 "locked ": "forwards, ";
if(¢ == clutchSteps~1) n += "hammer mode";

else if(¢ == clutchSteps-2) n += "drill mode";
else n += "clutch set to "+{(c+1);

n += ", gears set to "+(g+l);

return n;

This function converts the numbers that describe the state to a string. For
example, c is the clutch position; the code treats the clutch as a number 0 to
23, modeling the position of the twist control on the drill, which has 24 posi-
tions (there are 22 different strengths of screwdriving, a drilling mode, and a
hammer drilling mode). Calling stateName(1, 4, 2, 2) generates the string
“running forwards, clutch set to 5, gears set to 3”—a good state to do
some screwdriving. The function doesn’t ever say “stopped locked” but just
“locked” as it is obvious that when it’s locked it’s also stopped.

To test the code on all states, it can be put inside nested for loops to try it in
all possible states. As we shall need nested for loops running over all the drill’s
states several times, we write a function to make them easier to manage:
function every(doThis)

{ for(var t = 0; t < triggerSteps; t++)
for(var ¢ = 0; ¢ < clutchSteps; c++)
for(var g = 0; g < gearSteps; gt+)
for(var d = 0; d < directionSteps; d++)
doThis(t, ¢, g, 4);

At this point, we can test the state names work by the following code, which
defines a test function and calls it for all combinations of settings:
function test(t, ¢, g, 4)
{ document.write(stateName(t, ¢, g, d)+"
");

}

every(test);

9.8. Generating device specifications

®

Collar setting

for screwdriver, drill, or hammer modes

Running
reverse

Figure 9.8: A statechart description of the DC925 drill shown in figure 9.7 (p.317).
Unusually, this device has no self-loops—if the user can physically do an action, the
device changes state. In contrast, pushbuttons on most devices can be pressed even
when they do nothing, which creates self-loops in their FSM model.

Amongst the mass of output this generates, it will print “running locked” a
few times, which is a combination that ought to be impossible! You can’t press
the trigger in to get it to run when the direction slider is in the central, locked,
position. We obviously still have more programming to do.

Next, for all possible user actions in any state, we need to work out what tran-
sitions are possible:

d)

"trigger in", t+1, ¢, g, d);
"trigger out", t-1, ¢, g, 4);
"clutch increase”, t, c+1, g, d);
"clutch decrease", t, c-1, g, d);
‘gear up", t, ¢, gti, d);

"gear down", t, c, g-1, 4);
"direction +", t, ¢, g, d+1);
"direction -", t, c, g, d-1);

function action(t, c,
{ tramsition(t, c, g,
transition(t, ¢, g,
transition(t, c, g,
transition(t, ¢, g,
transition(t, ¢, g,
transition(t, ¢, g,
transition(t, ¢, g,
transition(t, ¢, g,

[STRN PN a Vi = N o M o PR o PR T]

This function is saying, for all of the features on the drill, things like “if the cur-
rent state is ¢, ¢, g, d then we could increase the clutch setting by 1, and if we did,
it would be in state t,c + 1, g,d.” If we wrote every(action) this would generate
calls to the function transition for every possible thing that could be done in every
possible state. Unfortunately, not all the states and not all actions are actually pos-
sible. For example, if the drill is locked, the trigger cannot be pressed in to make
it run; and if the drill is set to gear 2, we can’t increase the gear to 3, because there
are only three gears (gears are numbered 0, 1, 2, even though the drill itself calls
them 1, 2, 3). We need to program a check on the drill’s constraints:

319

T
]

320

Chapter 9 A framework for design

function allow(t, ¢, g, d)
{1f(t <0 |} t >= triggerSteps) return false;

if(¢ < 0 || ¢ >= clutchSteps) return false;
if(g < 0 || g >= gearSteps) return false;
if(d < 0 || d >= directionSteps) return false:

if(d==1 & t != 0) return false;
return true;

The important point is that this function and transition, discussed below, cap-
ture all the device’s constraints in one place. The complex constraints are captured
in a clear programmatic way. For example, the last test in the code above, if (d
== 1& t != 0) return false effectively says, “if the drill is locked, then the
trigger must be out and the motor off.”

Writing the code prompted me to think more about the drill’s constraints: have
I written accurate code for this book? It turns out that you can stall the drill
if you try hammer drilling with the motor in reverse and simultaneously apply
some pressure. This could happen if you are drilling, for instance, reinforced con-
crete and wish to free a drill bit that has got stuck—if you reverse the drill but
leave it in hammer mode, the drill itself may get jammed. It must be an over-
sight that this case is not mentioned in the user manual. The extra code needed
to express this constraint in the function allowis if(d == 0 &% t == 1 && ¢
== clutchSteps-1) return false, or in words, “if in reverse, and the trigger is
pushed in, and the clutch is set to hammer, then disallow this state.”

Our framework requires consecutive state numbers 0,1,2,3. .. with no gaps, s0
if some states are not allowed we need a way of mapping conceptual state num-
bers to real state numbers, skipping the states that are not allowed. The easiest
approach is to construct a map as a JavaScript array:

var map = new Array(triggerSteps*clutchSteps*gearSteps*directionSteps);

var n = 0;
function makeMap(t, c, g, d)
{ if(allow(t, ¢, g, A)
map [conceptualState(t, c, g, d)] = n++;
}

every (makeMap) ;

After running this code, map[s] gives us a number 0 to 359 of allowed state
numbers, provided that s is an allowed state from the original 432 conceptual
states; otherwise map is undefined.

Recall that the framework requires each state to be named. Here’s how the map
can be used to name the real states: if a conceptual state is allowed, map the state
number to a real state number, then give it its state name. As before, we generate
the state name from the combination of gears, clutch settings and so on, using the
function stateName we’ve already defined. Notice we use every to conveniently
run over all possible states.

9.8. Generating device specifications L
oo o]

drill.stateNames = new Array(n);
function nameEachState(t, c, g, d)
{ if(allow(t, c, g, 4))
drill.stateNames[map[conceptualState(t, ¢, g, d)1] =
stateName(t, ¢, g, 4d);
+

every (nameEachState) ;

To complete the framework FSM, we must make sure all the user’s state tran-
sitions are allowed; that means both the state we are coming from t0... and
the state we are going to t1... are allowed. For the drill, if both states are al-
lowed, the transition between them is always allowed. More complex devices
would need further programming to allow for more complex conditions on what
transitions are allowed—for example, although the drill allows us to change gear
when it is running, the manual warns this is a bad idea because the gears may
grind, and this constraint could be handled by writing ... && (t0 == 0 || g0
== g1)—meaning “trigger out (motor not running) or the gears aren’t changed.”
function transition(t0, c0, g0, 40, button, t1, cl, gi, di)

{ if(allow(t0, c0, g0, d0) && allow(tl, ci, gi, di))
drill.fsm[map[conceptualState(t0, c0, g0, d0)]][lookup(button)] =
map [conceptualState(tl, cl, gl, d1)];

The details we haven't yet provided are for initializing the FSM and defining
the function button, needed as a way of getting a button number from the button
name.

drill.fsm = new Array(n);

for(var i = 0; i < mn; i++)

{ drill.fsm{i] = new Array(drill.buttons.length);
// if you try an action, by default stay in the same state
for(b = 0; b < drill.buttons.length; b++)

drill.fsm[i] [b] = i;

¥

function lookup(button)

{ for(var b = 0; b < drill.buttons.length; b++)

if (button == drill.buttons[b])
return b;
alert("Button "+button+" isn’t recognized!");

}

The alert in the function lookup will happen if we misspell a button name
anywhere; it’s a useful check.

Now we’ve finished the programming, calling every(action) will create the
FSM we wanted. The FSM will have hundreds of rows like [346, 195, 352,
340, 346, 344, 346, 3461, but we need never look at them. We should use the
framework to analyze the drill’s properties rather than looking directly at the raw
data.

321

322

Chapter 9 A framework for design

Generating a FSM might take a long time—especially in a slow language like
JavaScript—but it only needs to be done once. It doesn’t matter how complicated
the functions like every and allow are; write them clearly, without worrying how
inefficient they seem. The point is to make the device’s interaction structure clear.

> Physical constraints are closely related to affordance, a topic covered in
section 12.3 (p. 415).

9.9 Conclusions

This chapter has introduced and explored the benefits of programming interaction
frameworks: general purpose programs that can run, simulate, or analyze any
device. The advantage of a framework is that it can check and measure all sorts
of useful properties—and it becomes worth doing so because we can compare
and contrast different designs very easily. Without a framework, each device is
a completely different programming problem, and it probably won’t seem worth
going to the trouble of writing high-quality program code to evaluate it.

In particular, this chapter developed a framework in JavaScript that readily al-
lows a device to be specified, simulated, and analyzed. Professional programmers
will perhaps want to redesign the framework for their favorite languages, and
there is much to be gained by doing so.

We could develop the simple framework here into a full-blown design tool.
There are many possibilities ... it's astounding that the user interfaces of most
devices are so routine—even a simple framework helps designers become more
certain in their processes, and in turn become more confidently creative.

9.9.1 Some Press On principles

B Once there is a prototyping framework, changing or revising a device
specification is easy and reliable — section 9.4 (p. 286).

B A framework can check for many basic design errors—something that cannot
be done when a system is written in a standard programming language —
section 9.5 (p. 288).

B Find all least cost paths through a device; any impossible paths should be
justified carefully or fixed — section 9.6 (p. 301).

B By programming user problems, the designer can get useful statistics and
measurements about a device’s overall behavior — section 9.6 (p. 311).

B Technical authors should use automatic tools working with device
specifications so they have reliable advice for users — section 9.6 (p.311).

B The harder it is for a designer or a programmer to solve task/action mappings,
the harder it will be for the user; find a way to make it easier — section 9.6
(p.312).

9.9. Conclusions

9.9.2 Further reading

Before starting any project, do an internet search and see whether somebody has
solved your problems for you, or defined standards that you can take advan-
tage of. There are many programs and libraries on the web you can start from
more easily than working on your own.

B Dot is an open source research project at AT&T. Full details of Dot can be
found at www.research.att.com/sw/tools/graphviz. I used Pixelglow’s award
winning OSX implementation, GraphViz, to draw the graph earlier in this
chapter.

B Kaye, J., and Castillo, D., Flash MX for Interactive Simulation, Thomson, 2003.
The authors professionally develop medical devices and training systems, and
their book is the best book for programming in Flash. It gives many examples
of device simulators and has more material on statecharts. Their techniques for
building interactive systems can be copied into other languages.

B MacKenzie, I. S., Motor Behavior Models for Human-Computer Interaction, in
Carroll, . M., ed., HCI Models, Theories and Frameworks, pp27-54, Morgan
Kaufmann, 2003. Scott MacKenzie provides a very good discussion of Fitts
Law and other models.

B Sharp, J., Interaction Design for Electronic Products Using Virtual Simulations, PhD
thesis, Brunel University, 1997. This thesis gives the definition of the
microwave oven we used.

B There are many programming tools and standards out there, from JavaHelp to
XML. In particular, SVG is a standard for vector graphics, effectively an open
source version of Flash.

