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Abstract—Shared memory is the predominant programming
model in today’s MPSoCs. However, existing SoC on-chip com-
munication standards like AMBA relies on the interconnect for
ordering. This is a problem as the number of actors increases,
as traditional simple interconnects like buses and crossbars do
not scale, yet scalable distributed NoCs are inherently unordered.
Without built-in ordering capability from NoC, cache coherence
protocols have to rely on external ordering points which can
forward the requests so that every cache observes the requests in
the same order. Such ordering points incur significant scalability
issues though, such as indirection latency or communication
hotspots in the network.

In this paper, we propose a universal ordered NoC plat-
form for shared-memory MPSoC designs to provide coherence
request ordering in addition to communication. The proposed
solution is based on a separate light-weight ordering network
to establish the global request order which the receiving NIC
leverages for delivering requests. The proposed solution provides
a comprehensive support for general network topologies and
various levels of memory consistency, while adhering to existing
cache coherence protocol standards. The full-system simulation
with heterogeneous MPSoC Rodinia benchmarks shows that it
reduces the request latency by 37.6% and 35.7% over ordering
points in 2D-mesh and butterfly fat tree topologies, respectively.
This translates to overall runtime improvements of 17.8% and
12.0% in each topology, for a 36-node and 32-node MPSoC
respectively.

I. INTRODUCTION

In the past decade, as single-core scaling hits a wall with
diminishing performance gains and rising power consumption,
we have witnessed a major transition to multi-core chips to
continue performance scaling. The trend towards multi-core is
now mainstream in system-on-chips(SoCs), with multiproces-
sor systems-on-chips (MPSoCs) having emerged in widespread
use in networking, signal processing, and multimedia chips,
from mobile processors like Qualcomm Snapdragon series
to Intel Xeon D SoC family and Freescale QorIQ network
processors.

While shared memory is the dominant programming model
for these MPSoCs due to ease of programming and legacy
codebase, it also imposes a major challenge to the design-
ers as MPSoCs scale in complexity. Existing SoC on-chip
communication standards such as AMBA 4[5]1, OCP 3.0[1],

1Recently new cache coherence protocol AMBA 5 CHI has been proposed,
targeted towards scalable many-actors MPSoCs. However, publicly-available
information is very limited, and coherence request ordering model seems
similar to AMBA 4

and HyperTransport[4] require the interconnect to order coher-
ence requests, which worked thus far, as on-chip interconnect
solutions were built with simpler topology structures that
inherently support ordering, such as the AMD opteron HT
bus[10], Intel haswell ring[14], and ARM CCI500 crossbar[6].
This no longer holds as MPSoCs scale to large numbers of
actors.

The most prominent trend in recent MPSoC design is
increasingly large number of actors being integrated onto
a single chip with continuing scaling of CMOS and vast
expansion of SoC application domains. Although a shared bus
or simple crossbar can provide adequate request ordering for
cache coherence protocols, they are becoming performance
bottlenecks due to inherent scalability problems. As a result,
scalable packetized network-on-chip(NoC) is gradually super-
seding traditional interconnects to cope with ever-increasing
bandwidth demands. However, such NoCs with distributed
routers are inherently unordered.

Without built-in ordering capability from NoC, the cache
coherence protocol has to rely on indirection to serialization
or ordering points which can forward the requests to other
processors in order. This indirection adversely affects perfor-
mance. It increases the network latency for delivery of coher-
ence requests to other processors. Furthermore, it concentrates
broadcasting traffic at the ordering points, which may become
communication bottlenecks in the network. Alternatively, we
can switch from the snoopy coherence prevalent in today’s
MPSoCs to directory-based protocols which can work atop
unordered NoCs, like the designs in [28]. In a directory-based
protocol, coherence requests are first sent to serialization points
called directory, which track sharing status of each cache line,
and forward intervention or invalidation requests accordingly.
Since the directory handles coherence requests ordering, it only
requires the interconnect to provide point-to-point ordering
for each source-destination pair. However, it cannot avoid
the performance degradation due to indirection latency, not
to mention the area overhead imposed by keeping cache
line information in the directory. Most critically, it requires
redesign of existing SoC cores and cache controllers, which
adds complexity in both design and verification, impacting the
already tight design-to-market time.

In this paper, we propose that the scalable NoC should
support coherence request ordering, in addition to communi-
cations. We propose an ordered NoC design platform (Ordered-
NoC) for shared-memory MPSoC to provide efficient request
ordering inside the NoC, and to support a wide range of cache
coherence and memory consistency models. It universally



applies to irregular MPSoC topologies, while adhering to
myriad existing cache coherence protocol standards so that
existing cores and IPs can be readily plugged into the platform.

Experimental results show that the proposed solution can
be applied to a variety of MPSoCs, ranging across differ-
ent network topologies and request ordering semantics. The
full-system simulation with heterogeneous MPSoC Rodinia
benchmarks show that it reduces the request latency by 37.6%
and 35.7% over ordering points in 2D-mesh and butterfly fat
tree topologies, respectively. This translates to overall runtime
improvements of 17.8% and 12.0% in each topology, for a
36-node and 32-node MPSoC respectively.

The rest of this paper is organized as follows. Section
2 presents relevant background and motivation, and Section
3 reviews related work. Section 4 presents the proposed
design. Section 5 reports experimental results, and Section 6
concludes.

II. BACKGROUND AND MOTIVATION

A. Cache coherence and memory consistency

The intuitive view of shared memory expects that read
requests will always observe the latest write value to the
memory. However, implementation of this intuitive shared
memory is not straightforward in the presence of multiple
caches. While caches are an indispensable part of processors
due to high off-chip DRAM access delay, they create a serious
design challenge for MPSoCs: cache coherence problem. If
a variable is replicated into multiple local caches, processors
can observe different values for the same variable. Further,
if two or more processors attempt to write the same memory
location simultaneously, processors might observe write values
in different orders from each other. Thus, we need well-defined
rules specifying correct shared memory behavior so as to
provide a basis in writing parallel programs. These rules are
often described in two separate concepts: cache coherence and
memory consistency.

Cache coherence defines memory access ordering for the
same memory location by two constraints: (1) write must be
eventually seen by other processors; (2) writes to the same
location must be seen in the same order by all processors.
In contrast, memory consistency specifies memory access
ordering across different memory locations. Table I summarizes
various memory consistency models classified according to
their ordering requirements. The most straightforward memory
consistency model is sequential consistency, in which memory
operations are observed in the same total order by all proces-
sors as all four types of program order are enforced. While
sequential consistency corresponds to intuitive understanding
of shared memory behavior, it hinders compiler and hardware
optimizations from exploiting out-of-order instruction execu-
tion, and thus leads to severe performance degradation.

B. Motivating case study

The 36-core MIT SCORPIO chip recently fabricated on
45nm SOI process [13] forms the motivation of our proposed

2Although cache coherence protocols usually require a total ordering for
the same memory location, Read-After-Read ordering can be possibly relaxed
since reordering does not make any semantic difference.

Ordered-NoC platform for MPSoC. SCORPIO demonstrated
that ordering can be embedded within a scalable mesh NoC,
delivering 24% better performance than directory-based order-
ing at low power and area overheads, and allowing for plug-
and-play with Freescale PowerPC cores and Cadence memory
controller through AMBA AXI and ACE communication stan-
dard.

In SCORPIO, for every memory request, the network
interface controller(NIC) broadcasts notification of the request
on a separate ordering network called notification network. The
receiving NIC then reorders and delivers the requests in the
notification order. The notification is represented as a bit-vector
in which each bit indicates if corresponding processor has
sent a memory request into the main network. The notification
broadcast from each node has a fixed route along XY-routing
path in 2D-mesh, and the routing can be done in bufferless
manner, since two incoming notifications can be merged if
the broadcasting paths are overlapping. This bufferless routing
can guarantee a fixed bound for broadcast latency from each
node, which enables synchronization of notification broadcasts.
NIC issues notifications only at the start of each time window,
which is set greater than the maximum broadcast latency.
Consequently, all nodes receive the same set of notifications at
the end of each time window. By applying a common ordering
rule to received notifications, each NIC can locally constitute
the same ordered list of source processor ID(PID)s which are
associated with the source nodes of each notification. The main
network is designed to provide point-to-point ordering, which
guarantees in-order delivery of requests from the same source.
Accordingly, each coherence request can be identified by its
source PID. Although the coherence requests from different
sources can arrive in any order, they can be reordered at each
NIC according to the global order settled by notifications.

While SCORPIO pointed at the promise of embedding
ordering within the NoC, it was heavily tailored for a spe-
cific target chip and has several limitations that make it not
applicable universally to most MPSoCs. Firstly, its bufferless
notification network is designed only for 2D-mesh topology;
Heterogeneous processors in MPSoC platforms have non-
uniform block sizes and bandwidth requirements, which ren-
ders 2D-mesh suboptimal in many target applications. Instead,
the platform-specific optimal topology should be generated
according to communication analysis at the design phase[24].
Secondly, SCORPIO indiscriminately reorders every coherence
request in a strict total order, which often results in unnecessary
ordering latency and performance loss. For example, if only
read requests with different cache line addresses arrive, they
could have been served immediately without waiting to be
ordered. Specifically, the SCORPIO notification network was
designed to provide a total order, aiming for sequential consis-
tency. While sequential consistency is functionally sufficient
for any memory consistency model, it imposes superfluous
ordering and increased latency for the relaxed consistency
models that are prevalent among existing commercial cores.

In short, as MPSoCs scale to many IP blocks, a universal
NoC platform that can support ordering across a wide spectrum
of shared memory models at high performance is needed. In
this paper, we propose such a generalized NoC platform that
encapsulates ordering, and efficiently supports a wide range of
memory models, so as to interface readily with existing cores,



Memory Consistency Model Total Ordering for the
same address2 Program Order Write Atomicity Memory

Fence

Cache Coherence X
Sequential Consistency X X X

TSO, Intel x86/x64, Sun Sparc v8 X RAR,WAR,WAW X X
Processor Consistency X RAR, WAR, WAW X

Sun PSO X RAR, WAR X
Weak Ordering, Release Consistency, IBM 370/Power, ARM X X

TABLE I: Ordering requirements according to memory consistency models

cache and memory controllers, and other IP blocks.

III. RELATED WORK

Snoopy cache coherence on unordered networks Com-
mercial cache coherence protocol standards such as AXI
Coherence Extensions(ACE) [5], OCP Coherence Extension
[1], AMD Hypertransport [9], and home snoop in Intel
Quickpath Interconnect(QPI)[15] require the interconnect to
support request ordering for correct operation. While an or-
dering point can provide such request ordering support over
unordered point-to-point interconnects, they add unnecessary
latency. Hence, there have been several proposals to enable
direct coherence request snooping. Timestamp snooping[21]
and INSO[3] assign a global logical order to each coherence
request, and the interconnects process them in the logical
order. Recently, SCORPIO[13] introduced request ordering
based on notifications by decoupling ordering function from
the main network. These prior works can provide only total
request ordering, whereas Ordered-NoC aims to selectively
relax ordering requirements according to target memory con-
sistency model. Source snoop such as that in QPI[15] also
allows out-of-order snooping for lower latency, but it requires
a separate home agent for conflict resolution, which requires
each transaction to wait for the acknowledgment from the
home agent with increased latency. In contrast, Ordered-NoC
can resolve ordering conflicts without the intervention of
separate agents thanks to a chip-wide global request order.
Token Coherence protocol[20] is an alternative solution for
request ordering on unordered network. To access a partic-
ular cache line, the requesting processor should collect at
least one token for read, and all tokens for write. Similar
to our approach, it can avoid both indirection latency and
total ordering overhead. However, Token Coherence requires
reimplementation of cache controllers to bookkeep the number
of tokens for each cache line, whereas Ordered-NoC can be
readily applicable to standard cache coherence protocols.

NoC for heterogeneous SoCs There has been a plethora of
NoC studies for a heterogeneous multi-core system or MPSoC.
Application-specific communication requirements and non-
uniform IP block sizes render homogeneous NoC routers
suboptimal, and naturally lead to heterogeneous architec-
tures. Substantial research has proposed design flows for
optimized topology generation based on bandwidth and la-
tency characterization[24]. In topology design, floorplan issues
have been considered to facilitate timing closure[25], [26].
Design methodologies for optimized router architectures for
application-specific communication patterns have also seen
substantial research [23], [12]. Ordered-NoC provides a gen-
eral framework to build request ordering functionality into
the NoC for heterogeneous NoC. It is orthogonal to the
optimization of the main network for communications, whether
it be topology, router micro architecture, etc. Ordered-NoC can

embed the ordering network and network interface controllers
in any conventional NoC, interfacing seamlessly existing IP
blocks and supporting any shared memory semantics.

As offchip memory traffic is dominant in today’s MPSoC,
researches have proposed optimized topology and router ar-
chitectures for higher DRAM utilization[16], [27], [11]. There
have also been prior NoC studies on ordering to guarantee
in-order packet delivery for multi-path routing [22], [18], or
for concurrent split memory transactions[17], [11]. Heteroge-
neous NoC designs to facilitate cache coherence protocols
have been proposed as well, such as reconfigurable NoC
for localized snooping[29] and efficient broadcast support for
acknowledgments[19]. Ordered-NoC goes beyond optimizing a
NoC for shared memory communications; It advocates instead
the embedding of request ordering in the NoC for supporting
shared memory coherence and consistency semantics.

IV. ORDERED-NOC DESIGN

Our proposed Ordered-NoC platform supports ordering
within the NoC, in a general manner so that existing IP cores,
cache and memory controllers that run a variety of memory
semantics can be plugged unchanged. In addition, it supports
heterogeneous, irregular MPSoC layouts by enabling ordering
to be embedded within any NoC topology.

The tenet behind our Ordered-NoC platform lies in a
separate ordering network that maintains ordering amongst re-
quests, while the main network handles the traditional commu-
nication function of NoCs. This split enables the main network
to deliver coherence requests in any order. The NIC issues
notifications on the ordering network in synchronization with
a time window, which is the maximum notification broadcast
latency of the ordering network. By the end of each time
window, all nodes receive the same set of notifications. Each
NIC applies the same ordering rule to the received notifica-
tions, and thus shares a common global request order. Ordered-
NoC selectively reorders the requests from the main network
according to the memory semantics. If any inconsistent request
ordering is detected at each NIC, it performs necessary recov-
ery actions. By sharing a common request order, each NIC
can resolve ordering conflicts in a distributed manner without
the intervention of separate home nodes or agents functioning
as ordering points. We will next dive into how our Ordered-
NoC platform enables the selective enforcement of ordering
between specific memory transactions, thus supporting diverse
memory semantics, then go into how it functions atop any NoC
topology, including irregular ones.

A. Reordering requests

Figure 1 shows the microarchitecture of the NIC for re-
ordering coherence requests. Outgoing coherence request from
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Fig. 1: Microarchitecture of Network Interface Controller(NIC)

the local processor is kept at the outgoing request buffer (oRB)
until it receives the data response and completes coherence
operation. The response is also stored into oRB until it is
ready for the delivery after ordering conflict is resolved. The
global request order by the ordering network is maintained by
storing the corresponding source PID for each notification in
the request order queue(ROQ). Snoop reorder buffer (sROB) is
a circular buffer holding incoming requests until the delivery
of the request to the processor. Each entry of sROB is paired
to each PID in the ROQ in order from the top to the bottom
(from the oldest to the most recent).When the oldest entry
from sROB retires, the corresponding top (oldest) PID from
the ROQ is also removed. If an incoming request arrives at the
NIC on the main network, its source PID is matched against
the ROQ and moved into a corresponding entry of sROB. Once
stored in the sROB, a request can be delivered for snooping in
any order, subject to the ordering requirements. Requests are
retired in-order from the sROB as a snooped request can only
release its entry when it reaches the head of the sROB.

B. Resolving ordering conflicts

Since out-of-order snooping is allowed independently at
each NIC when not constrained by the memory semantics,
each cache controller may end up with inconsistent cache data
from each other. To address this, Ordered-NoC makes a slight
modification to coherence protocol that does not interfere with
internal states or behaviors of cache controllers; when coher-
ence request is delivered from sROB to the cache controller,
NIC extends the request with a bit-vector(called the snoop
status vector (SSV)) indicating the snoop status of coherence
requests for the same cache line. The length of the SSV is
2 · (sROBd − 1) bits where sROBd is the depth of sROB; a
half for preceding requests and the other half for subsequent
ones to cover all requests within the maximum reordering
boundary. The SSV can be obtained from the current snoop
status of sROB. For the requests already retired from sROB,
it can search for the same cache line address the request
history queue(RHQ), which stores up to sROBd − 1 recently
retired requests for future look-up. When the cache controller
returns a data response, the SSV received from the request
is carried over to the response. When other NICs receive the
response, they extract the SSV, and compare it against the
snoop status of local sROBs to resolve any inconsistency. Once

those inconsistencies found, NIC is required to take relevant
recovery actions. We present two different schemes.

Recover-Total-Order The first scheme is to restore correct
behavior according to the global request order so that memory
operations take the same effect as the request snooping at
each NIC is performed in the total order. In this scheme, we
allow an out-of-order snooping only for read requests, which
means that only read requests can be snooped ahead of other
preceding requests. Under this scheme, out-of-order snooping
for read requests can be viewed as prefetching for reduced
latency. If prefetched value is known to be outdated, then NIC
should wait for updated value while dropping the obsolete one.
When receiving the response, NIC inspects the SSV of the
response to check if the response is sent from the latest data
owner. In other words, the response is confirmed to be valid
if there is no preceding write request for the cache line which
is not snooped in the SSV from the response(Accordingly, the
SSV only needs to provide the snooping status for preceding
requests.). Otherwise NIC discards the response since the data
will be overwritten by new data owner who issued that write
request.

Since we do not allow out-of-order snooping of write
request, new data owner cannot serve any preceding request
with newer value. Further, we can guarantee that all subsequent
requests after a write request (until a next write request) are
served by new data owner, by prohibiting snooping incom-
ing requests for the same cache line before completing all
preceding outgoing requests. If new response arrives while
there is already another response stored in the oRB, then NIC
compares SSVs of two responses from the earliest bits to later.
Because the later owner always has longer consecutive snooped
requests, we can distinguish the newer response. Additionally,
since NIC is required to deliver the response to the processor
only when the local request reaches the head of the sROB,
the global request order provides a logical point at which
each memory operation takes effect. Thus, we can guarantee
sequential consistency as all memory operations appear in the
global request order.

Figure 2 gives a walk-through example, which features
3 processors with MOESI cache coherence protocol3 with
sROBd = 3. For convenience of explanation, the RHQ is
omitted, and the requests remain in the sROB even after the
retirement. In the example, we denote read(write) request from
processor i by Ri(Wi). The figure also shows cache states of
each processor for two cache line addresses. The request for
the second address is shown as shaded in the sROB. (R3 is
for the second cache line, and the others are for the first).
(a) Each processor sends a coherence request to the main
network, and NIC issues a corresponding notification at the
start of notification time window to the ordering network. All
notifications arrive until the end of time window, and each
NIC settles on the same request order 2 → 1 → 3 as shown
in the figure. (b) R3 is the first request arriving at processor 1
and 2, while R1 is the first for processor 3. They are snooped
without waiting for preceding requests. The SSVs are (0, 0)
(an upper half for preceding requests) since there were no
earlier snooped requests. Processor 2 is at M(Modified) state

3In our example, it is assumed that processor at O(Owner) state takes
responsibility for generating data response when receiving read request from
other processors.



0

R 0

0

R/W Snooped

2

1

3

PID

R

Snooping Reorder
Buffer (sROB)

Global 
Order 
Queue

R/W Response

NIC 1

Outgoing
Request 
Buffer (oRB)

W 0

0

0

R/W Snooped

2

1

3

PID

W

R/W Response

NIC 2

0

0

R 0

R/W

2

1

3

PID

R

R/W Response

NIC 3

P2: (I,M)  Cache State  P1: (I, I)  P3: (M,I) 

Snooped

R1R3R3

Network

(a)

0

R 0

R 1

R/W Snooped

2

1

3

PID

R

R/W Response

NIC 1

W 0

0

R 1

R/W Snooped

2

1

3

PID

W

R/W Response

NIC 2

0

R 1

R 0

R/W

2

1

3

PID

R

R/W Response

NIC 3

P2: (I,M)->(I,O)  P1: (I, I)  P3: (M,I)->(O,I) 

Snooped

R3 R1

R1W2

0 0
Snoop 
Status Vector 0 0

W2

Network

R3 0 0

(b)

W 1

R 0

R 1

R/W Snooped

2

1

3

PID

R

R/W Response

NIC 1

W 0

R 0

R 1

R/W Snooped

2

1

3

PID

W

R/W Response

NIC 2

W 1

R 1

R 0

R/W

2

1

3

PID

R

R/W Response

NIC 3 Snooped

Network

0 0Response 
from P2

0 0Response 
from P3

P2: (I,O)  P1: (I, I)  P3: (O,I) -> (I,I)

W2
Snoop 
Status Vector 0 0W2 0 0

(c)

W 1

R 0

R 1

R/W Snooped

2

1

3

PID

R

R/W Response

NIC 1

W 0

R 0

R 1

R/W Snooped

2

1

3

PID

W

R/W Response

NIC 2

W 1

R 1

R 1

R/W

2

1

3

PID

R/W Response

NIC 3 Snooped

Network

Response 
from P2

P2: (I,O)  P1: (I, I)  P3: (I,I) ->(I,S) 

0 0Response 
from P3

(d)

W 1 

R 0 

R 1 

R/W Snooped 

2 

1 

3 

PID 

R 

R/W Response 

NIC 1 

W 1 

R 1 

R 1 

R/W Snooped 

2 

1 

3 

PID 

R/W Response 

NIC 2 

W 1 

R 1 

R 1 

R/W 

2 

1 

3 

PID 

R/W Response 

NIC 3 Snooped 

Network 

P2: (I,O) ->(M,O)->(O,O) P1: (I, I)   P3: (I,S)  

Response 
from P3 

 R1 0 1 

(e)

W 1 

R 1 

R 1 

R/W Snooped 

2 

1 

3 

PID 

R/W Response 

NIC 1 

W 1 

R 1 

R 1 

R/W Snooped 

2 

1 

3 

PID 

R/W Response 

NIC 2 

W 1 

R 1 

R 1 

R/W 

2 

1 

3 

PID 

R/W Response 

NIC 3 Snooped 

Network 

P2: (O,O) P1: (I,I)->(S, I)   P3: (I,S)  

0 1 Response 
from P2 

Response 
from P2 

(f)

Fig. 2: Walk-through Example for Recover-Total-Order

for the second cache line, and changes the state to O(Owner)
as it snoops R3. Similarly, processor 3 changes M(Modified)
state for the first cache line to O(Owner) as it snoops R1. (c)
Note that R1 is received by NIC 2, but it is kept at sROB until
local request W2 is completed since W2 has smaller request
order and two requests have the same cache line. Processor 3
sends the data response to processor 1. NIC 1 receives the
response but discards it since there was a preceding write
W2 with the first cache line address, which is not snooped
in the SSV, (0, 0) at the response. On the other hand, NIC 3
can accept the response from processor 2, since there is no
previous requests with the second cache line address. (d)(e)
The response for W2 arrives at NIC 2 and is delivered to
processor 2. After the retirement of W2, NIC 2 can deliver
R1 for snooping. (f) The response from processor 2 arrives at
NIC 1. As the SSV shows that the last write W2 is serviced,
the response is confirmed to be valid and delivered (two steps
are shown in the same figure). Note that R3 was immediately
served at NIC 2 without reordering latency. Still, final memory
operations have the same effect as all coherence requests are
snooped in the global request order, 2→ 1→ 3.

Reorder-On-the-fly We have seen how Recover-Total-Order
scheme can guarantee strong memory consistency models
like sequential consistency and total store order(TSO) without
reordering of every coherence request in a total order. However,
it still imposes considerable ordering restrictions. Although
it allows out-of-order snooping, the response must wait until
all preceding requests are received. It also enforces in-order
snooping of write requests and generates redundant responses.
We can further enhance the performance for the relaxed
memory consistency by addressing these issues.

The second scheme aims to provide utmost flexibility in
the request ordering as the actual snoop order is determined
on the fly by the data owner at the time. When receiving
the response, local snooping status is readjusted by the SSV
from the received response as follows. There are two types
of requests which need readjustment in the snoop order. First,
NIC identifies unsnooped requests by the local processor which
are known to be already snooped by the previous owners. NIC
marks those requests in the sROB as snooped, and skips the

delivery. On the other hand, there can be the requests that are
already snooped by the local processors, but not snooped by
the previous owner. To maintain the same snoop order, NIC
changes them unsnooped, and resends those requests to the
processor after returning the response.

Figure 3 revisits the previous walk-through example. Now
it features only the first cache line address. (a)(b) The global
request order is established as 2 → 1 as before. Processor
1 and 3 snoop W2 and R1 respectively. (c) The response
from processor 3 arrives at NIC 1. Processor 3 next snoops
W2. (d) NIC 1 can deliver the response from processor 3
immediately. Recall that in the previous walk-through, NIC
1 discarded the first response expecting that a valid response
would arrive later. On the contrary, every response is valid now,
and NIC is responsible for readjusting its local snoop order
accordingly. In the example, NIC 1 changes the snoop status
of W2 to unsnooped , and resends it to the processor, since the
response from processor 3 demands to reorder W2 behind R1.
(e) NIC 2 delivers the response for W2. This time, the SSV
indicates that R1 is already processed by the previous data
owner. Accordingly, R1 is marked as snooped without actual
snooping. Note that the final snoop order is 1 → 2, which is
set by the first data owner, processor 3.

C. Ordering network construction

The role of the ordering network is to broadcast notifica-
tions to all nodes within a guaranteed latency, which provides
synchronized time window for global request ordering. Figure
4 illustrates the ordering network construction process atop
the main network. We assume the design phase to produce
any irregular NoC topology which is optimized according to
various factors such as proximity and communication traffic
analysis. Given the underlying main NoC topology(Figure
4a), we independently construct a bufferless broadcast tree to
deliver notification bits for each node. The broadcast tree is
carrying only a 1-bit notification signal (with an additional
flow-control signal to stop further notification injections). The
tree is constructed by running a shortest-path tree algorithm
for each node as a root, as shown in Figure 4b for two nodes
J and K, to obtain the minimum broadcast latency. The final
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Fig. 3: Walk-through Example for Reorder-On-the-fly
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Fig. 4: Construction of ordering network atop given main net-
work topology. The ordering network is the sum of individual
broadcast trees rooted at each node.

ordering network is the sum of all individual broadcast trees
by iterating this process for all nodes. The latency bound is
given as the maximum latency of all broadcast trees.

In the main network, the requests from different sources are
allowed to pass through the routers in an out-of-order manner.
Without a proper measure, out-of-order requests may occupy
all the virtual channels in the router, while the NIC waits
for the request with smaller request order, and thus blocks
all virtual channels, which leads to a deadlock. To address
this, we add an escape virtual channel(EVC) to ensure the
request with the smallest request order at the time can always
proceed to the next router. For this purpose, the main network
router should track the global request order from the ordering
network with the PID order queue (the same structure as the
request order queue inside NIC in Figure 1), while observing
PIDs of coherence requests that have already passed through
the router. It matches the PID of passing requests against PIDs
in the PID order queue and remove it from the queue, and vice
versa. EVC is reserved for the request having the PID that sits
on the top of the PID order queue. Accordingly, NIC sets aside
a separate register for EVC in the request buffer.

V. EXPERIMENTAL RESULTS

We illustrate the generality of the Ordered-NoC platform
by applying it to a diverse range of MPSoC designs and
memory models, then evaluate its impact on memory access
latency and overall application performance against the state-
of-the-art.

A. Methodology

We used the C++-based multi-processor simulation tool
GEM5 [7] along with the cycle-accurate network model Gar-
net [2] modified to model the proposed Ordered-NoC. For
workloads, we use the heterogeneous computing benchmark
suite, Rodinia [8]. Simulations are run to completion for each
application, with statistics gathered at the end of the parallel
portions.

Our baseline models include both directory and ordering
points-based protocols. In all system configurations, each
processor has local private L1/L2 caches with MOESI cache
coherence protocols. Different system configurations then dif-
fer only in how the coherence requests are ordered and
delivered to other processors. In the directory-based baseline
protocol, the sharer information of each cache line is stored
in distributed directories at the static home nodes. When a
cache miss occurs at the local L2 cache, the coherence request
is delivered to the static home node, and the directory either
forwards the request to the data owner (the processor having
O(Owner) state in the local cache) or generates invalidations
to all the sharers. Both directory and ordering points-based
protocols use a directory for request ordering, but in ordering
points-based protocols, the directory contains no storage for
the sharer information, and thus just broadcasts forwarded
coherence requests and invalidations. We use SCORPIO as
another baseline to illustrate how Ordered-NoC reduces the
performance overhead of total ordering by applying request
ordering selectively.

To show the generality of our proposed Ordered-NoC
platform, we applied it to MPSoC designs running atop two
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different topologies (2D-mesh and butterfly fat tree) and sup-
porting two alternative memory models, total store order(TSO)
and relaxed memory consistency. In TSO, each write request
is required to complete after invalidating all the sharers to
provide write atomicity, or the cache coherence protocol should
operate on a strict total request order. Accordingly, Recover-
Total-Order scheme is applied in Ordered-NoC. In relaxed
memory consistency model, we assume basic cache coherence
with the support of atomic writes and memory fences, while
writes can complete before receiving the acknowledgments
for invalidations, hence, Ordered-NoC’s Reorder-On-the-fly
scheme can be applied. Table II summarizes the detailed
system configurations.

Processor Configuration
Processing cores in-order core with X86-64 ISA

Operating System Linux Kernel v. 2.26.28.4
Cache line size 64 Bytes

L1 cache Split 32KB I&D, 4-way, 1-cycle access latency
L2 cache Exclusive unified 64KB per each core

4-way, 4-cycle access latency
Cache coherence MOESI protocol with private L2 cache
Request Ordering Directory(Dir) , Ordering Points(OP)

Total ordering(TO) by SCORPIO, Ordered-NoC

On-Chip Network
Topology 2D-mesh (6 × 6) for 36-core

Butterfly fat tree for 32-core
Latency 1-cycle pipeline for router

1-cycle for link traversal
Virtual Networks 2
Virtual Channels 4 per Virtual Network

Link channel width 16 Bytes
Directory 10-cycle access latency

Memory Interface
Memory 2 memory controllers (10-cycle latency)

100-cycle access latency for off-chip DRAM

TABLE II: Target System Configuration

B. Results

Figures 6 and 7 compare average snooping latency of co-
herence requests of each system configuration. In a directory-
based protocol(Dir), when a L2 cache miss occurs, the request
is first sent to the directory(Req. Delivery). After a directory
look-up(Directory), it is forwarded to the sharers to receive
a data copy, or to invalidate upon writes (Forwarding). For
the request ordering system based on ordering-point(OP),
the request is forwarded to all nodes without incurring a
directory look-up latency. In total ordering(TO) and Ordered-
NoC(ONoC), the coherence request is directly delivered avoid-
ing forwarding latency, but each NIC imposes additional order-
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Fig. 6: Snooping Latency Breakdown for TSO
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Fig. 7: Snooping Latency Breakdown for Relaxed Memory
Consistency

ing latency(Ordering). As shown in Figure 6a, Ordered-NoC
leads to reduction in memory latency of 18.1% and 14.9% in
each topology for TSO when compared against total ordering.
With relaxed memory consistency, Ordered-NoC results in
even higher latency reduction of 25.0 % and 21.7 % over total
ordering4. This shows that Ordered-NoC can flexibly configure
to the desired level of request ordering, and yet serve memory
requests quickly. Especially, in a butterfly fat tree topology,
where SCORPIO cannot provide request ordering for cache
coherence, the latency reduction over ordering points reaches
12.3 and 14.7 cycles for each memory consistency model,
which are 35.7% and 41.5% reduction. In 2D-mesh topology,
the latency reduction is 13.4(37.6%) and 16.9 cycles(44.5%)
over ordering points.

Figure 8 shows overall performance improvement by
Ordered-NoC in terms of normalized runtimes (against the
Directory baseline). In general, Ordered-NoC tends to have
relatively smaller performance impact compared to the snoop-
ing latency reduction, because it is relevant to only L2 cache
misses. The figure graphs normalized runtimes for relaxed
memory models, where ONoC-A represents Recover-Total-
Order scheme, and ONoC-B Reorder-On-the-fly. The overall
runtime reduction is 17.8% and 12.0% compared to ordering
points in each topology. The reduction over total ordering
is 10.3% and 7.2%, respectively. As expected, the system
performance improvement is highly sensitive to the cache
miss rate. For example, streamcluster has 37.3 L2-cache
misses per thousand instructions, whereas bfs merely has
1.2. Therefore, in streamcluster, Ordered-NoC gives 31.7%
and 21.4% runtime reduction over ordering points in each
topology, which are considerably higher than 6.4% and 4.1%
in bfs. Considering that the input and working set sizes in
the experiments are markedly limited due to the limitation of
simulation times, we believe that Ordered-NoC will show more
significant performance improvement in realistic workloads
that will have much larger cache footprint.

4As SCORPIO can be applied only for 2D-mesh, for butterfly fat tree
topology, total ordering(TO) is implemented by Ordered-NoC by only allowing
strict in-order snooping.
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VI. CONCLUSION

In summary, we motivated the need for an ordering layer
in NoCs that can allow actors in shared-memory MPSoCs to
plug-and-play readily. We proposed such a universal Ordered-
NoC that works with any memory coherence and consistency
model and NoC topology. We demonstrated how Ordered-NoC
delivers better performance than other alternatives.
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