
In-Network Snoop Ordering (INSO): Snoopy Coherence on Unordered
Interconnects

Niket Agarwal, Li-Shiuan Peh and Niraj K. Jha
Department of Electrical Engineering

Princeton University, Princeton, NJ, 08544
niketa@princeton.edu, peh@princeton.edu, jha@princeton.edu

Abstract

Realizing scalable cache coherence in the many-core era
comes with a whole new set of constraints and opportunities. It
is widely believed that multi-hop, unordered on-chip networks
would be needed in many-core chip multiprocessors (CMPs) to
provide scalable on-chip communication. However, providing
ordering among coherence transactions on unordered inter-
connects is a challenge. Traditional approaches for tackling
coherence either have to use ordered interconnects (snoop-
based protocols) which lead to scalability problems, or rely
on an ordering point (directory-based protocols) which adds
indirection latency.

In this paper, we propose In-Network Snoop Ordering
(INSO), in which coherence requests from a snoop-based pro-
tocol are inserted into the interconnect fabric and the net-
work orders the requests in a distributed manner, creating a
global ordering among requests. Essentially, when coherence
requests enter the network, they grab snoop-orders at the in-
jection router before being broadcasted. A snoop-order speci-
fies the global ordering of the particular request with respect to
other requests. Before requests reach their destinations, they
get ordered along the way, at intermediate routers and desti-
nation network interfaces. Our logical ordering scheme can
be mapped onto any unordered interconnect. This enables a
cache coherence protocol which exploits the low-latency na-
ture of unordered interconnects without adding indirection to
coherence transactions. Our full-system evaluations compare
INSO against a directory protocol and a broadcast based To-
ken Coherence protocol. INSO outperforms these protocols by
up to 30% and 8.5%, respectively, on a wide range of scientific
and emerging applications.

1 Introduction
With continued transistor scaling providing chip designers

with billions of transistors, architects have embraced many-
core architectures to deal with increasing design complexity
and power consumption [1, 2, 17, 33]. With memory being
shared by an increasing number of cores, a scalable cache
coherence mechanism is imperative for these systems. Tra-
ditional approaches to cache coherence are broadcast-based
snoopy protocols1 and directory-based protocols. Broadcast-

1There are many different interpretations of snoopy protocols. We use
snoopy to imply a broadcast protocol in which requests are sent directly to
other nodes in the system, without having to go to an ordering point. Other
nodes in the system “snoop” to determine whether the request is meant for
them and act accordingly.

based snoopy protocols have been the most commonly used
approach to building symmetric multiprocessors (SMPs) [9,
16, 26]. These protocols rely on ordered interconnects like a
bus or tree to ensure total ordering of transactions. The pri-
mary advantage of snoop-based protocols is that they have di-
rect cache-to-cache transfers and do not require a directory
structure. However, the main limitation of these protocols is
that they rely on ordered interconnects, which do not scale be-
yond a moderate number of cores. They also have the band-
width overhead of broadcasts.

Directory protocols do not require ordered interconnects, as
they rely on distributed ordering points and explicit message
acknowledgments to achieve request ordering. This enables
highly scalable interconnects, such as packetized meshes. Di-
rectory protocols are also not broadcast in nature. This im-
poses lower bandwidth requirements on the interconnect fab-
ric. However, there is an added latency penalty introduced by
directory indirection, along with an additional cost associated
with the storage and manipulation of directory state.

In the past, there has been considerable effort to retain
and scale snoopy protocols by adapting them for split trans-
action buses [16], hierarchical buses [26], and address broad-
cast trees [9] that provide a “logical bus” ordering. Expanding
further, existing products, like the IBM Power4 and Power5,
retain and scale snoopy coherence protocols onto a ring inter-
connect [27]. One of the reasons why so much effort has been
devoted towards continuously scaling and supporting snoopy
protocols, which were initially designed for bus-based sys-
tems, is that they enable direct cache-to-cache transfers and
thus do not incur directory indirection for cache misses. For
workloads that have fine-grain sharing, direct cache-to-cache
transfers provide a huge advantage over going to an ordering
point and suffering indirection. If the directory access misses
on-chip and has to go off-chip, this problem is exacerbated.

The interconnect fabrics for future CMPs face different con-
straints than prior SMP systems. Future CMPs will most likely
employ packet-switched on-chip interconnects. Implementing
coherence on such unordered fabrics not only poses signifi-
cant challenges, but the new on-chip substrate also offers new
opportunities. With the abundance of on-chip bandwidth on
point-to-point interconnects, meeting the broadcast bandwidth
requirement of snoopy protocols may no longer be impossible,
especially in the face of recent proposals [15] that reduce the
cost of multicast traffic in on-chip networks, making broad-
casting more scalable. However, providing a total order to
snoop requests on unordered interconnects still remains a chal-
lenge (Section 5 surveys prior work that tackles this problem).

In this paper, we target the above problem and propose



Node 0 Node 1 Node n

Ordered Broadcast Network

Ordering Point

Req A

Req B

Req A

Req B

Req A

Req B

Req A

Req B

(a) Ordering-point protocol

Node 0 Node 1 Node n

Req A

Req B

Req A

Req B

Req A

Req B

R R R

Req A
Req B

A - 0

B - 1

(b) INSO

Figure 1. Global ordering for snoopy coherence

In-Network Snoop Ordering (INSO), which enables scalable
snoopy coherence on unordered on-chip interconnects. INSO
alleviates the burden on the coherence substrate (processors,
caches, memory, coherence controllers) for ordering requests.
Each coherence controller has the illusion that it is attached to
a “logical bus” address network that delivers snoop requests in
a totally ordered fashion. For every request message from a
cache controller, the injection router assigns it a snoop-order,
which is a globally-ordered id, before broadcasting the request
to all nodes in the system. The snoop requests are ordered par-
tially in the network and partially at the destination network
interface, and delivered to the cache and memory controllers
in an ordered fashion. INSO is essentially a distributed mech-
anism of ordering snoop requests. It enables direct cache-to-
cache transfers because cache requests do not incur directory
indirection. It also does not require the expensive directory
storage structure. Full-system evaluations show that INSO out-
performs the baseline directory protocol by up to 30% (average
19%) on a broad range of benchmarks. In short, INSO offers a
scalable way to achieve cache coherence on future many-core
systems.

The rest of the paper is organized as follows. Section 2 pro-
vides an overview of INSO. Section 3 discusses various tech-
niques employed to make INSO practical, and delves into the
microarchitectural implementation details. Section 4 discusses
the evaluation methodology and presents quantitative results.
Section 5 contrasts INSO with prior related work and Section
6 concludes.

2 In-Network Snoop Ordering: Overview
It has been previously shown that snoopy protocols depend

on the logical order and not the physical time at which re-
quests are processed [7, 20], i.e., the physical time at which a
snoop request arrives at nodes is not important, as long as the
global order in which all nodes in the system observe a partic-
ular request remains the same. There is a class of cache co-
herence protocols in which global order of requests is created
through the use of an ordering point. Figure 1(a) illustrates
how an ordering-point protocol works. All messages first go
to an ordering point, which then broadcasts the messages to all
nodes in the system. The interconnection network has to en-
sure that the order in which requests leave the ordering point
is the same as the order in which nodes observe the requests.
A straightforward example of such an ordered interconnect is
a bus. In a simple bus, all requests first arbitrate for the bus
and on winning the arbitration, the request is broadcasted on
the bus. The order in which requests win arbitration is the or-

der in which nodes see the requests. Thus, a bus provides an
implicit global ordering among requests. Global ordering has
also been achieved previously by employing an ordered broad-
cast tree [10]. The tree interconnect uses a two-level hierar-
chy of switches to form a pipelined broadcast tree. The single
root switch orders requests in the order in which they leave
the switch and in-order delivery between switches at different
hierarchy levels of the tree interconnect ensures all nodes ob-
serve messages in a fixed global order. A ring interconnect
has also been previously proposed [22] as an ordering-point
interconnect. All requests first go to a single ordering point in
the ring and are then forwarded to other nodes. The requests
then travel across the entire ring one behind the other and are
thus seen by all nodes in the same order. As the node count
increases, the latency cost of indirection to the ordering point
increases; requests have to travel more and more hops to reach
the ordering point and then get forwarded to other nodes. Go-
ing to a single ordering point also creates congestion at the
ordering point and degrades network performance.

In an ideal scenario, requests should get ordered at the
source itself and go directly to nodes, without having to go
to any ordering point. This is the central intuition behind our
INSO proposal: if requests can be ordered right at the net-
work router attached to the requesting node, the ordering indi-
rection can be significantly reduced. To achieve this aim, we
need to arbitrate requests in a distributed manner, yet ensure
a global order. Figure 1(b) presents a high-level overview of
how such an ordering is obtained. On a cache miss, snoop
requests are inserted into the network by cache controllers.
The interconnect assigns distinct, but globally-ordered num-
bers (e.g., 0, 1, 2, ..) to the snoop requests. This number is
called a snoop-order. Snoop-orders are initially distributed to
each router in the interconnect in a round-robin fashion, such
that no two routers have the same snoop-order. In a 64-node
network, for instance, Router 0 gets snoop-orders 0, 64, 128, ..,
while Router 1 gets snoop-orders 1, 65, 129, .., and so on. The
router attached to the requesting node then assigns the lowest
snoop-order to each request injected into the network, before
broadcasting them to all nodes in the network. Periodically, if
a snoop-order is not consumed (as no requests are injected at
this router), the router will let this snoop-order expire through
a broadcast. At every node, a request is only released from the
network interface (NIC) to the cache/memory controllers if its
snoop-order is one higher than the last snoop-order received at
that controller, initialized to 0 at OS bootup time. Essentially,
this ensures that all nodes observe requests in a global order.
Here, the order is dictated by how snoop-orders are initially



Cache Controller
0

(a) Core 0 - Router 0

Cache Controller
1

(b) Core 1 - Router 1

Figure 2. INSO modules
distributed across routers and how they are allowed to expire.

2.1 Walkthrough example

We will next walk through INSO in detail. The baseline
system for our evaluations is a 64-tile CMP architecture with
each tile consisting of a processor core, a private L1 cache,
and a private L2 cache attached to a router. Eight memory con-
trollers are placed along the edges of the chip, and connected to
routers as well2, which are part of a 64-node packet-switched
mesh network. Cache coherence is maintained between the
private L2 caches and the memory. The major modules in-
volved in INSO are shown in Figure 2. All memory and L2
cache controllers attach to an interconnect router via an NIC.
We next walk through how two requests A and B (shown in
Figure 1(b)) are handled and ordered by INSO. INSO behaves
similarly for read and write requests.

1. Core 0’s L2 cache miss triggers a request, Req A, to be
sent to its cache coherence controller, which leads to Req
A being injected into the network via the NIC. All snoop-
requests are broadcast in nature and need to be delivered
to all nodes in a global order. The NIC takes every snoop
request from the cache controller, encapsulates it into a
single-flit packet and injects the packet into the attached
router.

2. Each router has a snoop-order bank that contains a set of
snoop-orders that the router can assign to requests. The
snoop-orders present in a particular router’s bank are dis-
tinct from any other snoop-order in the system (In the ex-
ample in Figure 2, Router 0 has even snoop-orders while
Router 1 has those that are odd.) The snoop-order bank is
a RAM containing a set of numbers that are initialized at
OS bootup time. Each router has a snoop-order allocator
that picks the lowest non-assigned snoop-order from the
snoop-order bank and assigns it to every injected request.
For instance, here, the allocator looks up its snoop-order
bank and assigns snoop-order 0 to Req A. Req A is then
broadcasted to all nodes in the system.

3. Now, Core 1’s L2 cache miss triggers a request, Req B,
that is injected into the NIC and next into Router 1. Since,
the lowest snoop-order in Router 1’s bank is 1, it assigns
Req B a snoop-order 1. Req B is then broadcasted into
the system.

2The routers that are connected to both cache and memory controllers have
two injection and ejection ports with associated NICs.

4. As Req A and Req B make their way through the network
routers towards various nodes, there might be common
paths where the requests meet. The routers along these
shared paths prioritize lower snoop-orders over higher
ones and order Req A ahead of Req B whenever they col-
lide. In this way, the network partially orders the snoop-
requests for various destinations.

5. When Req A reaches the destination (since snoop re-
quests are broadcasts, the destinations are all nodes), the
router forwards the request to the NIC. All NICs in the
system have a snoop-order counter which is initialized
to 0 at OS bootup time. On receiving a snoop-request,
it compares the snoop-order of the request to the counter
and if a match occurs, it forwards the request to the cache
controller. The counter is also incremented in the process.
Since Req A’s snoop-order is 0, it results in a match with
the snoop-order counter and is immediately forwarded to
the cache controller. The value of the snoop-order counter
is now incremented to 1.

6. When Req B reaches the destination, the NIC compares
its snoop-order (i.e., 1) to its snoop-order counter. If the
NIC is one which has already seen Req A, the counter
value would be 1 and Req B is immediately forwarded to
the cache controller, while incrementing the value of the
counter to 2. If the NIC has not seen Req A so far, Req
B is buffered at the NIC buffers, until this NIC receives
Req A, at which time the snoop-order counter matches
that of Req A (i.e., 0) and Req A is forwarded to the
cache controller. The value of the counter will then be
1 which matches that of Req B’s snoop-order, allowing
Req B to be released to the cache controller and value of
the counter to be incremented to 2.

The basic job of the network routers and NICs is to ensure
that Req A is delivered to all cache and memory controllers
before Req B, because Req A has a lower snoop-order than
Req B. This ensures that requests are processed by destina-
tion nodes while respecting the snoop-order, enabling a total
ordering of requests in the system, very much similar to that
in ordering-point implementations. INSO does not demand
changes to the asynchronous legacy snoopy cache coherence
controllers, as it provides an illusion of an ordered network to
them. It is also independent of network topology and adds little
overhead to state-of-the-art on-chip routers (see Section 3.5).

Since INSO provides a global order of all requests, it sup-
ports the strictest consistency model – sequential consistency.



For more relaxed consistency models that do not require such
ordering of requests, INSO can be tweaked for better perfor-
mance. Without loss of generality, for the rest of the paper,
we will assume sequential consistency, since it poses the hard-
est ordering requirements to the cache coherence protocol. We
will discuss in Section 3.6 how INSO can be altered to incor-
porate performance enhancement techniques for relaxed con-
sistency models.

2.2 Properties of INSO that ensure correct
global ordering

The following invariant properties of INSO allow such a
distributed scheme to ensure correct global ordering:

1. All requests have distinct snoop-orders: Each snoop-
order only resides at one router in the entire chip and
can only be assigned to a single request, thus ensuring
a monotonic order across all requests.

2. A snoop-order counter is incremented only when the
snoop-order it is waiting for is broadcasted and received
at the node: This ensures that the cache and memory con-
trollers only see requests in the order of snoop-orders.

3. Unused snoop-orders expire: This ensures forward
progress.

3 Making INSO Practical
Although the scheme described in the previous section is se-

mantically correct, there are some implementation issues that
need to be addressed to make it practically viable. We tackle
these issues one-by-one in the following subsections.

3.1 Finite snoop-orders

Snoop-orders are appended to request flits at source routers.
A flit in an on-chip environment is of the order of 8-16 bytes
[25, 31, 33]. A request message contains the address of the
requested block along with some information to describe the
kind of request. This is usually not large and leaves bytes of
space for the encoding of snoop-orders. This, however, is not
infinite. On a system’s forward progress, snoop-orders need to
be wrapped around. For instance, in a system with 32 snoop-
orders, and 16 routers, if a particular router’s snoop-order bank
contains snoop-orders 0, 16, when the router has serviced
two requests, and assigned them snoop-orders 0 and 16, the
third request that comes along is assigned snoop-order 0, thus
reusing 0. Having two requests with the same snoop-order can
violate the global ordering ensured by INSO. To avoid this, the
second use of snoop-order 0 has to be ordered after the first in-
stance. We achieve this by designing the network to guarantee
point-to-point ordering for the message class in which the re-
quests travel, i.e., messages sent from node A to B are always
received at B in the order they were sent from A. Figure 3(a)
illustrates how we use point-to-point ordering to ensure that
snoop-order 0s that are assigned later do not overtake earlier
ones in the network3. Req 01 stands for the request that was
assigned the first snoop-order 0, 02 for the second, and so on.
Router X has requests 02 and 03 competing for the output link.
It always ensures that 02 leaves the router first and then 03.
01 is already at Router Y. Since 01, 02 and 03 reach Router
X in that order, it can simply use a virtual channel (VC) and

3Note that point-to-point ordering is also required for certain message
classes in Token Coherence [19] and Uncorq [30]

switch allocator (e.g., queuing arbiters [11]) in which requests
that arrive first at a particular input port always leave first. Fig-
ure 3(b) shows the router microarchitecture that handles the
proposed point-to-point ordering. Since Req 02 arrives first,
it places its VC request first. In case Req 03 arrives before
Req 03 has been granted an output VC, Req 03’s VC request
is queued behind Req 02’s request. The VC allocator services
the requests in the order in which they are queued. This guar-
antees that Req 02 always wins the VC first and hence places
the switch request first. The switch allocator similarly services
requests in a queued fashion and hence guarantees that the re-
quests leave the router in the order in which they arrived. This
ensures point-to-point ordering of messages. This property is
only applied to the message class in which requests travel, so
that other message classes can have an allocation policy of
their choice and are not limited to this policy. Since this is
done at every router, the second use of snoop-order 0 is always
received at a node later than its first use. Each router thus dis-
tinguishes, and orders, snoop-orders based on the arrival order.
By not stalling on the wrapping around of snoop-orders, the
finiteness of snoop-orders does not affect performance.

Determining the number of snoop-orders, N , in the sys-
tem. With reuse of snoop-orders as detailed above, having
just one snoop-order per router ensures semantic correctness.
However, this creates a static priority in the system where pri-
ority is always given to requests originating from nodes with
lower snoop-orders. On the other hand, all requests from the
same node are ordered in the order in which they are injected
into the network. Even when requests with higher snoop-
orders arrive at the destinations earlier, they would have to al-
ways wait for lower snoop-orders from the same node. Hence,
to ensure fairness in the system (say, with 64 routers), we dis-
tribute the snoop-orders such that Router 0 has snoop-orders 0,
127, .., and Router 1 has snoop-orders 1, 126, .., and Router 63

has 63, 64, .., and so on. What this does is that for 64 rounds of
snoop-orders, every router has the same average priority. Thus,
we require no more than R snoop-orders in every router, i.e.,
total number of snoop-orders in the entire network, N = R2,
where R is the number of routers in the interconnect.

INSO and adaptive routing. In order to enable finite
snoop-orders in the system, INSO relies on employing point-
to-point ordering for the message class in which requests
travel. Apart from point-to-point ordering, deterministic rout-
ing in the network is also required to guarantee that requests
with the same snoop-order do not take different routes. Thus,
in its current form, INSO does not allow adaptive routing in
the message class in which requests travel. Adaptive routing
can be employed for other message classes and INSO does not
restrict that.

3.2 Deadlock avoidance

Prioritizing allocation for lower snoop-ordered packets is
not enough to guarantee that the lowest snoop-ordered re-
quest always makes forward progress towards the destina-
tion. In classic on-chip networks and NICs, packets can be
stalled when they are unable to obtain a VC or buffer. Fig-
ure 4(a) shows a scenario in which packets with higher num-
bered snoop-orders hold onto VCs/buffers at the NIC as well
as intermediate routers. The NIC, however, waits for the re-
quest with snoop-order 0, which is blocked at an intermediate
router as it is unable to get hold of a buffer or VC. In such a
scenario, the system is deadlocked.

To address the above problem, we reserve a VC and buffer
at every router and NIC for the lowest snoop-order not seen so



Router X Router Y

(a) Example
(b) Router
microarchitecture

Figure 3. Point-to-point ordering

X Y

3

4

1

0

ctr = 0

Router Router

NIC

VCs

VCs VCs

2

Waiting for 
snoop-order 0

(a) INSO deadlock

X Y

2

1

0

ctr = 0

Router Router

NIC

VCs

VCs VCs
ctr = 0ctr = 0

VC reserved for 
snoop-order 0

(b) INSO deadlock avoidance

Figure 4. Deadlock scenario and avoidance scheme

far. Each router also maintains a snoop-order counter, similar
to that of NICs. This ensures that the lowest snoop-ordered
requests always proceed towards the target without starvation.
Figure 4(b) shows how reserving a VC for the lowest snoop-
order guarantees deadlock freedom. One thing to note about
the router’s snoop-order counter is that it cannot be simply
incremented once the packet holding a matching snoop-order
passes through the router. This is because higher snoop-orders
may have already traversed and left the router. This is un-
like the snoop-order counter of an NIC which can be sim-
ply incremented when it sees a matching request. Ideally, the
router could keep a record of the snoop-orders it has seen so
far and then increment the counter accordingly. This book-
keeping would incur high overheads. We get around this prob-
lem by exploiting the broadcast nature of the protocol. Every
message, which a router receives, goes to the NIC attached to
the router, while going out to next-hop routers. Once the re-
quest with the lowest snoop-order is ejected from the router,
it triggers the NIC to determine the next lowest snoop-order
the router has yet to see and update the router’s snoop-order
counter. We will discuss the microarchitectural details asso-
ciated with this scheme in Section 3.5. We will also present
quantitative results in Section 4.5 to show the performance im-
pact of reserving a VC for deadlock avoidance.

3.3 Finite destination buffering

The scheme described so far requires a huge amount of
buffering at the destination NICs, as the request with the low-
est snoop-order may not arrive at all destination NICs before
the requests holding higher snoop-orders. In this case, the
NICs need to buffer the waiting requests, till the lowest snoop-
order arrives. Although the network does partial ordering of
snoop-orders, in the worst case, the snoop-orders can arrive in
a strictly decreasing order of their snoop-orders. If the memory
system allows M messages to be outstanding at a time, none
of these messages might grab lower snoop-orders and this de-
mands M request buffers at each destination interface. The ex-
piration logic will take care of the system’s forward progress
by expiring lower snoop-orders. However, providing so much
buffering is impractical. We thus need a mechanism to handle
finite and practical number of buffers at every destination NIC.

Our solution is as follows. Suppose we are permitted to

have B buffers at the destination NICs. The destination routers
eject a request from router buffers (typically the input VC
buffers of a router) into the NIC buffers, only if the snoop-
order of the request is less than snoop-order counter +B. Oth-
erwise, the incoming requests remain in the router. The NIC
scans these B buffers for the request with the lowest snoop-
order so as to forward that onto the cache/memory controller.
Once the lowest snoop-order request is forwarded, its corre-
sponding NIC buffer is released, and the NIC snoop-order
counter is incremented. A simple example to illustrate this
is shown in Figure 5. Suppose the number of NIC buffers, B,
is 2 and the snoop-order counter at the NIC is 0. The NIC thus
would allow only snoop-orders 0 and 1 to be ejected from the
router into the NIC buffers. The figure shows how a request
with snoop-order 2 is buffered in the router to allow a request
with snoop-order 0 to proceed. Thus, INSO handles finite des-
tination buffering by buffering higher snoop-ordered packets
in the network itself, which triggers backpressure through the
network to throttle injection nodes. As the network routers
prioritize lower snoop-ordered packets, this allows such pack-
ets to overtake higher snoop-order packets and help alleviate
buffer pressure at the destination interfaces, easing impact on
network throughput.

3.4 Snoop-order expiration

Our INSO scheme is a simple and straightforward policy of
generating and assigning snoop-orders in a round-robin fash-
ion to the routers’ snoop-order banks. It assigns snoop-orders
in a fair manner to all nodes and if the request stream from all
nodes is at approximately the same rate, INSO works well. A
scenario may, however, arise where snoop-orders with lower
numbers are not assigned frequently to requests, because the
routers that have lower numbered snoop-orders do not receive
requests. This would create a situation in which requests with
higher numbered snoop-orders keep on waiting for the lower
snoop-orders that get assigned very infrequently. To tackle this
problem, we employ a snoop-order expiration scheme. All
routers check at regular intervals (called expiration window,
W ) how many snoop-orders they have assigned in the last in-
terval (say, C). If this is below a threshold (T ), the routers
broadcast the lowest T − C snoop-orders as expiration mes-
sages, so that nodes waiting on them can proceed. All NICs



(a) 2 at router (b) 0 arrives
at router

(c) 0 goes to
NIC

Figure 5. Finite buffering

Switch
allocator

VC allocator

Snoop-order
bank

Route 
computation

VC 1

VC 2

VC n

Input buffers

VC 1

VC 2

VC n

Input buffers
PxP Crossbar 

switch

Input 1

Input P

Output 1

Output P

Expiration 
logic

Snoop-order
selector

Snoop-order ctr

Virtual 
Channel
Allocation

Switch
Allocation

Switch
Traversal

Link
Traversal

Routing

Expiration network

Figure 6. Router microarchitecture
and pipeline

Figure 7. Expiration
logic

increment their snoop-order counters upon receiving the expi-
ration messages. If expiration snoop-orders are sent as sepa-
rate flits, a higher T would consume higher interconnect band-
width. However, since the snoop-order distribution is static,
just encoding the lowest snoop-order and the number of snoop-
orders into a single flit would be sufficient to indicate the ex-
pired snoop-orders.

The values of W and T determine how frequently and how
many times expirations take place. Let us consider a scenario
in which, in the last expiration window, the maximum number
of requests that can be injected into any router (say, Router A)
in the system from its local NIC was X and there was a router
(say, Router B) that did not receive any request from its NIC.
Let us assume that all the snoop-orders that Router A assigned
to its requests were higher in number than the snoop-orders
present in Router B. In such a case, Router A’s requests reach
their destinations and wait for Router B’s snoop-orders to ex-
pire. Ideally, Router B should expire all the lower X snoop-
orders at once which requires T = X . It would also be ideal
to have expiration window W as small as possible so that the
waiting time for unused snoop-orders is not large. However,
having a smaller W and higher T would lead to more frequent
expirations and might consume extra interconnect bandwidth.
Thus, an intermediate scenario is desirable where the perfor-
mance benefits of expiring many snoop-orders does not lead
to huge bandwidth overheads. We describe the snoop-order
expiration logic further in Section 3.5.
3.5 Router microarchitecture

Figure 6 shows the proposed INSO router microarchitecture
and pipeline (newly added portions are highlighted in grey).
The difference in the router microarchitecture that implements
INSO versus a typical interconnection network router is the
snoop-order bank, snoop-order selector, snoop-order counter
and expiration handling logic. The VC and switch allocators
are modified to provide point-to-point ordering for the request

message class.
Router pipeline and snoop-order bank. In a state-of-the-

art on-chip router [11], the header flit of a packet goes through
the Routing stage to determine the output port for the packet.
The header then arbitrates for a output VC in the VC Allo-
cation stage. Upon successful allocation of a VC, the header
proceeds to the Switch Allocation stage where it arbitrates for
the switch input and output port. On winning the switch, the
header moves onto the Switch Traversal stage in which it tra-
verses the crossbar. This is followed by Link Traversal in
which the header traverses the link to the next router. Sub-
sequent body and tail flits simply follow the route and VC that
are reserved by the head flit.

In our proposed INSO router, a new pipeline stage is added
– for assigning snoop-orders to snoop requests. Snoop re-
quests that have not been assigned snoop-orders go through
Snoop-order Allocation to obtain a snoop-order. The snoop-
order bank is implemented as a register that contains the low-
est snoop-order to be assigned next, filled from a RAM that
contains the snoop-orders allocated to the router. During the
Snoop-order Allocation stage, a request is sent to the snoop-
order selector, which simply looks up the snoop-order bank
register and returns the value. Since this Snoop-order Alloca-
tion stage is just a simple register lookup, it can occur in paral-
lel with the Routing stage. The scanning for the lowest snoop-
order in the bank and updating of the register can be done off
the critical path. The header flit goes through snoop-order al-
location in parallel with the routing stage. Body and tail flits
experience no change to the router pipeline. After successful
snoop-order allocation, the requests become normal broadcast
packets and do not go through this stage again. Thus, snoop-
order allocation occurs only once per snoop request in the en-
tire network. The snoop-order bank contains R snoop-orders,
where R is the number of routers in the on-chip network. For
a 64-node network, each snoop-order bank contains only 64



snoop-orders, each requiring log(4096) = 12 bits. Since, the
number is so low, the hardware overhead of the snoop-order
bank is not significant.

Expiration logic. The pseudo-code for the expiration logic
is shown in Figure 7. Every router has a timeout window (W ),
at which the expiration logic checks whether the router has
used up T snoop-orders in the last expiration interval. If the
router has used up C snoop-orders which is smaller than T ,
the router generates a broadcast expiration flit that encodes
the lowest snoop-order present in its bank and T − C. In
our simulations, we assume that the expirations go through a
separate network consisting of a contention-less single-cycle
router pipeline. We next justify our assumption of a single-
cycle router for the expiration network. For a 64-node system,
an expiration flit consists of a snoop-order, which is 12 bits,
and T − C, which is log(T − C) bits. We will show later
that having a T of 1-4 is sufficient for INSO to perform well.
Thus, T − C can be encoded in two bits implying an expi-
ration flit of 14 bits. The maximum traffic injection load for
expiration network is known (one 14-bit flit every W cycles)
and thus the buffers of the routers can be sized to avoid run-
ning at saturation. A 14-bit crossbar will have a timing path
that is much faster than the regular 128-bit crossbar (because
of quadratically shorter interconnects and drivers). Thus the
Crossbar and Link Traversal stages can potentially fit within
a single cycle. Since every packet is a broadcast, VC Allo-
cation and Switch Allocation can be done off the critical path
every cycle. Apart from assuming a single-cycle router, we
also do not model contention in the expiration network. The
expiration network can have up to N expirations every W cy-
cles. Since all expirations are broadcast in nature, each NIC
can potentially receive N flits in W cycles. We did not model
this contention and are currently working on realistic model-
ing of the expiration network and investigating the sensitivity
of INSO’s performance to W .

Snoop-order counter update. As mentioned earlier, the
snoop-order counter inside a router cannot simply increment
its value on the departure of the lowest snoop-order. This is
because other higher snoop-orders might have already traveled
through the router. Routers are also not aware of snoop-order
expirations and thus need to somehow know what is the mini-
mum snoop-order for which they should reserve a VC. On the
departure of the snoop-order for which the router was reserv-
ing resources, it obtains the next lowest outstanding snoop-
order, which the router has not seen so far, from the NIC. Due
to the broadcast nature of the system, all messages that tra-
verse a particular router always reach its local NIC. The NIC
thus has up-to-date information about what the router has seen.
It responds to the router’s request by informing it about the
next snoop-order the router should reserve resources for. This
information can be piggybacked with the usual credit signals
between NICs and routers.

Ideal multicasting. A multicast message contains a desti-
nation set that comprises multiple nodes. Tree-based multicast
messages move along a common path and branch off into mul-
tiple multicasts when different destinations require traversal
through different paths. We assume ideal hardware tree-based
multicast support in our routers, i.e., that each multicast mes-
sage loads at most one flit across every link in the network.
Implementing practical hardware multicast support in on-chip
routers has been discussed in VCTM [15]. VCTM achieves the
ideal hardware tree-based multicast network we assume with
64 trees, one per node, each tree with all 64 destinations. As

shown in that paper, this leads to feasible overheads.

3.6 Interaction of INSO with the memory
consistency model

Throughout the paper, we have assumed sequential consis-
tency as the memory consistency model. This is the strictest
consistency model and provides the toughest constraints on the
cache coherence protocol. It requires a global ordering of all
requests in the system and INSO achieves that. However, a
cache coherence protocol is not always required to provide
such support. In [3], Adve et al. discussed various memory
consistency models and their requirements. A cache coherence
protocol is essentially a mechanism that propagates a newly
written value to the cached copies. A memory consistency
model can be interpreted as the policy that places an early and
late bound on when a value can be propagated to a processor.
The two main aims of a coherence protocol are: (1) to ensure
that writes are eventually seen by all processors, and (2) writes
to the same location are serialized. If the memory consistency
model poses just these requirements on INSO, then it can sim-
ply maintain per-cache-line snoop-orders. Requests from dif-
ferent cache lines would then not impact the ordering wait time
of each other. For consistency models, such as the IBM Pow-
erPC [23], that do not require atomicity of writes (a write re-
quest does not need to wait for all sharers in the system to be
invalidated before it can assume the write is complete), INSO
can be further relaxed. For a sequentially consistent memory
model, on a write request, the cache controllers in INSO wait
for the request to return to itself to ensure global order. Note
that the request waits for its global order in the NIC and the
cache controller sees a request only after it is ordered. Even if
the cache controller receives the data before that, it waits for
the ordering of the request. This is because the cache controller
needs to be sure that all cache copies have been invalidated.
Receipt of its own request in a global order guarantees that. If
atomicity of writes is not a requirement, the cache controller
can be relieved from this wait. In short, we believe that INSO
is a generic technique that can support all memory consistency
models and is not limited to sequential consistency.

4 Evaluation
For all our evaluations, we do full-system simulation us-

ing Virtutech Simics [32] extended with the GEMS [21] tool
set. The GARNET [4] network model was used to capture
the detailed aspects of the interconnection network. GAR-
NET is a cycle-accurate interconnect model that models a de-
tail packet-switched [13] router pipeline including VCs [12],
buffers, switches and allocators. GEMS, along with GARNET,
provides a detailed memory system timing model.

4.1 Target system

We simulate a tiled 64-core CMP system with parameters
given in Table 1. Each tile consists of a two-issue in-order
SPARC processor with 32 KB L1 I&D caches. It also includes
a 1 MB private L2 cache. DRAM was attached to the CMP
via eight memory controllers along the edges. The DRAM ac-
cess latency is modeled as 275 cycles. The on-chip network
was chosen to be an 8×8 mesh consisting of 16-byte links
with deterministic dimension-ordered XY routing. Each input
port contains eight VCs and four buffers per VC. We simu-
late a 4-cycle router pipeline with a 1-cycle link. The on-chip
routers are assumed to have perfect hardware multicast sup-
port. The INSO specific parameters are also given in Table 1.



We did some state-space exploration and then chose an expira-
tion window (W ) of 20 cycles and threshold (T ) of 3 to strike
a balance between performance improvement and bandwidth
penalty. As described earlier, we assume the expiration flits
go through a separate network consisting of a contention-less
single-cycle router pipeline.

Table 1. Simulation parameters
Processors 64 in-order 2-way SPARC cores
L1 Caches Split I&D, 32 KB 4-way set associative, 2

cycle access time, 64-byte line
L2 Caches 1 MB per core, 10 cycle access time, 64-

byte line
Directory Caches 1 MB per memory controller, 8 MB total

on chip
Memory 8 memory controllers, 275-cycle DRAM

access + on-chip delay
On-chip Network 8×8 2D Mesh, 16-byte links, 4 cy-

cle router pipeline, 8 virtual channels, 4
buffers per virtual channel

INSO Parameters
Number of Snoop-orders (N) 64

2 = 4096
Expiration Timeout Window (W) 20 cycles
Threshold Snoop-orders (T) 3

4.2 Workloads

We ran SPLASH-2 [35] and PARSEC [6] application suites
on the above-mentioned configuration. SPLASH-2 is a suite of
scientific multithreaded applications that has been used in aca-
demic evaluations for the past two decades. PARSEC is a re-
cent benchmark suite that focuses on emerging parallel work-
loads. Thus, we chose to evaluate INSO on both SPLASH-2
and PARSEC to explore the impact of their diverse charac-
teristics on INSO. We ran the parallel portion of each work-
load to completion for each configuration. All benchmarks
were warmed up and checkpointed to avoid cold-start effects,
and we ensured that caches were warm by restoring the cache
contents captured as part of our checkpoint creation process.
To address the variability in parallel workloads, we simulated
each design point multiple times with small, pseudo-random
perturbations of request latencies to cause alternative paths to
be taken in each run [5]. We averaged the results of the runs.

4.3 Coherence protocols

We now discuss the implementation details of the cache co-
herence protocols simulated. We compared our INSO proposal
to a directory protocol and a broadcast based Token Coherence
protocol. All protocols were part of the GEMS distribution.

INSO. We evaluated our INSO network with a broadcast
snoopy protocol. The protocol supports the MOSI states. On
a private L2 cache miss, the snoop request is broadcasted into
the network assuming the network orders the requests like an
ordering-point protocol. The memory determines if it should
respond by maintaining per-block state. Sorin et al. [28] pre-
sented a detailed specification of the broadcast protocol that
we evaluated. An ideal INSO scheme would be one in which
each snoop request, on entering the network, would be as-
signed the lowest available snoop-order in the system, so that
the request’s wait time for getting ordered upon arriving at the
destination would be minimal. There would be no expirations
in such a scheme as all snoop-orders would always get used.
We call this scheme INSO-Oracle, and model it as a single,

global snoop-order bank that all routers can magically look
into at no overhead. This is the ideal that INSO can reach and
we evaluate this scheme to estimate the potential of INSO.

Directory protocol. We evaluated a directory protocol that
supports the MOESI coherence states. In the directory proto-
col, when a memory access is not satisfied within a tile (private
L1/L2), it seeks the directory for the sharing information of the
cache block. We evaluated an implementation in which the di-
rectory information is stored in DRAM. For a private L2 con-
figuration like ours, the entire directory state cannot be fully
accommodated within the on-chip private L2 tags. A bit-vector
is stored for every memory block to indicate the sharers. We
implemented on-chip directory caches distributed along with
the memory controllers. On-chip directory cache misses lead
to off-chip directory access with high delays. To minimize
this and study the actual effect of only on-chip indirection, we
evaluated a 1 MB directory cache at each memory controller,
totaling a generous 8 MB of on-chip capacity.

Token Coherence. We evaluated a broadcast based Token
Coherence protocol (TokenB) [19] that tries to achieve higher
performance by directly broadcasting requests to all nodes in
the system4. Token Coherence is a protocol that resolves pro-
tocol races without an ordering-point indirection by decou-
pling coherence into a correctness substrate and a performance
protocol. The correctness substrate guarantees correct transfer
and access to blocks by tracking tokens, and prevents starva-
tion using persistent requests. In the absence of a data race, the
requester gets all tokens it desires along with the data, and di-
rect cache-to-cache transfers are made possible. Token Coher-
ence represents a protocol that does not incur an ordering-point
indirection in the common case and thus is a strong competitor
to our INSO proposal. The TokenB protocol that was evalu-
ated supported the MOESI coherence states. To ensure a fair
comparison, we evaluated TokenB on the same ideal broadcast
interconnect as used in INSO.

4.4 Evaluation results

We next present the evaluation results for comparing INSO
against the above-mentioned protocols.

Normalized runtimes. Figure 8 gives the benchmark run-
times (smaller is better) for all protocols normalized to the di-
rectory protocol. INSO consistently performs better than the
directory protocol over the range of workloads. INSO im-
proves the runtime over the directory protocol by 19% on av-
erage (maximum of 30%). INSO-Oracle improves the runtime
over the directory protocol by 25% on average (maximum of
32%). This speedup in runtime is primarily due to the avoid-
ance of ordering-point indirection in INSO. We measured the
average snoop-order expiration wait time for INSO, which is
the average number of cycles a request has to wait at the NIC to
get ordered. In INSO-Oracle, a request magically gets the low-
est outstanding snoop-order in the system and is broadcasted.
While active requests are being broadcasted, they might reach
different destinations in different order. Thus, the wait time for
requests would be the time they wait in the NIC for requests
that have grabbed lower numbered snoop-orders and hence is

4We could not get TokenB to run PARSEC for our 64-core configuration.
A situation was arising in which sharers were replacing their shared lines and
passing their tokens to the memory. This led to a situation in which mem-
ory eventually had all the tokens except the owner. Since memory is not the
owner, it could not supply tokens to requests. This should have led to per-
sistent requests eventually resolving the starvation. Our runs were, however,
deadlocking.









































































  

 

Figure 8. Runtime for various protocols normal-
ized against directory protocol











































































   

 

Figure 9. Interconnect traffic for various proto-
cols normalized against directory protocol

a true ordering wait. For INSO, requests would also have to
wait for lower numbered snoop-orders that were not grabbed
and expire. For the benchmarks evaluated, the average order-
ing wait time for INSO-Oracle was 0.89 cycles. For INSO,
this number was 11.53 cycles for SPLASH-2 benchmarks and
23.45 cycles for PARSEC benchmarks. This explains why
INSO performs better than the directory protocol by a smaller
margin on PARSEC as compared to SPLASH-2.

INSO also performs on an average 3.5% faster (maximum
of 8.5%) than TokenB for the SPLASH-2 benchmarks. INSO-
Oracle outperforms TokenB by 8% on average (maximum of
11.2%). INSO wins over TokenB in cases when there are data
races, when TokenB relies on retries and expensive persistent
requests to guarantee that requests are not starved. This in-
cludes going to an ordering point that orders competing re-
quests one by one. INSO does not incur any such indirection.
The reason why INSO does not outperform TokenB by much
is because the SPLASH-2 benchmarks do not incur significant
data races. The percentage of persistent requests (percentage
of requests that had to finally rely on persistent requests to
get tokens) for our experiments was 1.02% on average. This
relatively low percentage of persistent requests was expected
for SPLASH-2 benchmarks as they do not have fine-grained
parallelism and thus competing writes (that cause data races)
among same cache lines are infrequent. In one specific case
(WATER-NSQ), INSO performs 4% worse than TokenB. The
average ordering wait time for INSO for this benchmark was
25.2 cycles. Also, the percentage of persistent requests with
TokenB for this benchmark was 0.97%. The higher ordering
wait time for INSO and the lower percentage of persistent re-
quests for TokenB seem to be the reason for INSO’s inferior
performance on this benchmark.

Network traffic. Figure 9 shows the normalized traffic
(smaller is better) per interconnect link for all protocols nor-
malized to the directory protocol. While INSO improves sys-
tem performance, it puts additional bandwidth requirement on
the interconnect. This is because of the broadcast nature of
INSO. Directory protocols have the least interconnect traffic
since most of the messages are unicast in nature. In a directory
protocol, the requester sends a request to the directory which
responds if it has valid permissions. Otherwise, it forwards the
request to the exact set of sharers. Thus, no message that is
traveling in the network is redundant. INSO-Oracle presents
the least amount of interconnect bandwidth that a broadcast
protocol would require. This is because it involves a source re-
quest broadcast followed by the data response. TokenB’s band-
width requirement is a little more than INSO-Oracle because

of retries, explicit acknowledgments and persistent requests.
INSO has additional snoop-order expirations that contribute
to interconnect traffic. The shaded bar in Figure 9 shows the
bandwidth on the expiration network in INSO. Since this addi-
tional traffic travels on the separate expiration network, it does
not affect the normal request and data traffic. However, con-
tention in the expiration network might lead to additional or-
dering wait time for INSO. We are currently working on eval-
uating the impact of this additional delay, by modeling the de-
tailed expiration network.













 












   

Figure 10. Runtime of INSO with different num-
ber of request VCs normalized against 8-VC

4.5 Effect of reserving a VC for the mini-
mum snoop-order

As described in Section 3.2, INSO reserves a VC and a
buffer at every router to avoid deadlocks that might occur due
to the minimum snoop-order getting backlogged behind higher
snoop-orders. To understand its effect, we conducted an ex-
periment in which we retain the simulation configuration as
above, gradually reducing the number of VCs from 8 to 1 in
the request message class, and study the performance impact.
We evaluated the FFT and the LU-NC benchmarks from the
SPLASH-2 benchmark suite. Figure 10 shows the benchmark
runtimes for the various configurations normalized to the 8-
VC configuration. It is evident that as the number of request
VCs is reduced, the performance of INSO degrades. For low
VC configurations (1 VC for LU-NC and 1, 2 VC for FFT),
the simulation seems to run indefinitely. Thus, INSO does not
perform well with very low number of request VCs.

5 Related Work
INSO achieves a direct protocol (one with direct cache-to-

cache transfers) on unordered interconnects. Our work is thus
related to protocols which work towards direct cache-to-cache
transfers as well as those that create ordering (partial/full) in
unordered networks.



5.1 Protocols with direct cache-to-cache
transfers

Token Coherence [19] is a protocol that achieves direct
cache-to-cache transfers in the absence of a data race. It re-
lieves the interconnect fabric from any ordering requirement
and performs ordering at the protocol level. It decouples coher-
ence into a correctness substrate and a performance protocol.
The protocol associates a fixed number of tokens with a cache
line. To access a particular line, the core broadcasts a request
for tokens for the particular line. If there are no competing re-
quests for the cache line in the system (which is the common
case), the requesting core gets the required tokens and data to
proceed with the request. In case of a data race (competing
request for the same cache line), the correctness protocol is in-
voked by re-issuing requests, and an ordering point orders the
requests and guarantees forward progress. Similar to Token
Coherence, INSO also enables direct cache-to-cache transfers.
However, unlike Token Coherence, direct transfers always oc-
cur, not only in the absence of a data race. INSO relies on
distributed ordering to attain direct cache-to-cache transfers.
Token Coherence requires per-cache-line tokens which incur
substantial storage overheads. The number of tokens is at least
the number of cache lines. In contrast, INSO requires R2

snoop-orders, where R is the number of routers in the system.
This is much fewer than the potential cache lines in the system.
INSO also does not require changing the asynchronous legacy
snoopy cache controllers whereas Token Coherence requires a
re-implementation of the whole coherence substrate.

Similar to Token Coherence, Intel’s new Quickpath Inter-
connect (QPI) [18] decouples the ordering of requests from the
interconnect and still attains direct cache-to-cache transfers.
QPI is a source broadcast protocol in which requesters broad-
cast requests for data, and in the absence of a data race, the
data are sent to the requester while maintaining coherence. All
broadcasts also go to per-node directories which detect data
races and ask nodes to fall back to a coherent state. Although
INSO enables direct cache-to-cache transfers, unlike QPI, it
happens for all cache requests. INSO thus does not require a
race detection and fall-back mechanism like QPI.

In-network cache coherence [14] also aims at cache-to-
cache transfers, through the network routing requests towards
nearby caches. However, again, it needs a fall-back mecha-
nism when the network does not have directory information,
regressing to the directory home node as the ordering point. It
also requires significant per-cache-line storage within the net-
work.

5.2 Ordering on unordered interconnects

Uncorq [30] is an embedded ring coherence protocol in
which snoop requests are directly broadcasted, using any net-
work path, to all nodes which reply with data directly to the
requester. This achieves direct cache-to-cache transfer. How-
ever, along with a snoop request broadcast, a response message
is initiated by the requester. This response message traverses
the entire logical ring, collecting responses from all nodes.
Read requests do not have to wait for the response message,
but write requests have to. Unlike Uncorq, INSO does not en-
force such a response wait for requests. INSO also does not
require embedding of a unidirectional ring on top of the exist-
ing network.

Multicast snooping [7] uses totally ordered isotach-like [24]
fat-tree networks to create a global ordering of requests. Delta
coherence protocols [34] also implement sequential consis-

tency by employing isotach networks to guarantee global or-
dering of requests. In contrast, we do not restrict our ordering
technique to any particular topology. Our design proposes an
in-network ordering scheme that can be mapped to any under-
lying physical network.

Gray Zone [8] implements weak ordering by timestamping
requests over the network. The protocol assigns timestamps
to every processor request on its creation. Processors com-
municate with each other to determine the oldest message cur-
rently present in the system. Ordinary reads and writes are ser-
viced immediately, while synchronization operations are ser-
viced only after the oldest message has been serviced. This
achieves weak ordering by ensuring that all accesses issued
before a synchronization operation complete first. A global
clock is used to assign timestamps. In contrast, INSO is not
restricted to weak consistency and does not rely on “physical”
time to provide ordering.

Comparison with Timestamp Snooping. Timestamp
Snooping (TS) [20] creates ordering of snoop requests on un-
ordered interconnects by using logical timestamps and reorder-
ing requests at the end points. TS is the closest related work
that tries to assign logical orders to requests, similar to INSO.
We explain two terms from TS that help us compare the two
techniques better. Ordering time (OT) is the logical ordering
time of a request, similar to snoop-order (SO) in INSO. Guar-
anteed time (GT) is defined as the logical time that is guaran-
teed to be less than the OTs of any requests that may be re-
ceived later by a router/NIC, similar to snoop-order counter in
INSO. To clearly contrast the two approaches, we present their
pseudo-codes in Figure 11. The differences between INSO and
TS are as follows:

1. Notion of logical order. INSO and TS differ in their def-
inition of logical order. A snoop-order X in INSO is as-
signed to a single request and upon receipt of all snoop-
orders up to X − 1 at the destination, the request can be
processed. However, an OT of X in TS can be assigned
to N requests, where N is the number of nodes in the
system. The destination waits for all requests with OT =
X and a token to advance GT to X + 1. It is then that
all requests with OT = X are ordered, breaking ties with
a function of the source ID numbers. It should be noted
that the token to advance GT from X to X + 1 will al-
ways arrive after all requests with OT = X arrive. Thus,
even after the request with OT = X from source 0 arrives,
it has to wait for all valid requests with the same OT as
well as the token to advance GT.

2. Expiration orders. INSO relies on explicit expiration of
snoop-orders, i.e., an expiration message expires specific
snoop-orders. TS employs tokens that are exchanged be-
tween routers as well as between routers and NICs. A
token advances GTs at routers and NICs. A token that
advances GT from X to X + 1 is essentially an expi-
ration signaling that no other request with OT = X will
arrive. By not explicitly sending expirations, TS’s expi-
ration bandwidth requirement is lower than that of INSO
if expirations are sent at the same frequency. However,
the TS paper suggested that expirations be sent every cy-
cle. This is equivalent to having an INSO timeout window
(W ) of 1, while INSO suggests a less aggressive timeout
window. Conceptually, both TS and INSO can use either
scheme and the trade-off is essentially between higher ex-
piration bandwidth and shorter wait time at destinations
for expired logical orders.



INSO Pseudo-code

(a) INSO

TS Pseudo-code

(b) TS

Figure 11. Comparison of INSO and TS
3. Logical order assignment. INSO assigns logical orders

to a request from the local router’s snoop-order bank. The
snoop-order banks of routers are populated in a round-
robin manner. In contrast, a request in TS is assigned a
logical order that is at least the source’s GT plus the logi-
cal time to get from the source to the furthest destination.

4. Implementation challenges. INSO addresses implemen-
tation challenges, such as finite end-point NIC buffer-
ing and router complexity, which TS does not. For a
64-processor configuration that allows eight outstanding
requests from each processor, TS requires 512 address
buffers at every end-point, which is not practical. INSO
can work with any amount of finite end-point buffering.
TS also requires updating of slack in messages buffered in
the router. This updating requires logic that can read and
write all messages queued inside the router. This would
require additional ports to the buffer queues so that nor-
mal router operations are not interrupted. INSO’s routers
do not have this complexity.

Quantitative comparison. Since INSO and TS use differ-
ent schemes for logical ordering, destination processing and
expiration, we present a quantitative comparison of the two
techniques on a set of scientific benchmarks as well as the LM-
BENCH [29] microbenchmarks. LMBENCH is a suite of mi-
crobenchmarks that stresses the system’s bandwidth and thus
we chose to evaluate TS and INSO on it. We ran the mem-
ory bandwidth benchmarks in LMBENCH [CP (copy), WR
(write), RDWR (read-write)] with the data set being 80 KB in
size. The simulation setup was the same as in Section 4 except
where mentioned here. We implemented TS’s detailed net-
work inside the current GEMS framework. We modeled slack
processing and token exchange exactly the way described in
the TS paper. For a fair comparison, we assumed infinite end-
point buffering in both TS and INSO. For INSO, we selected
W = 10, T = 1, and for TS, we selected the initial Slack = 4.
We selected a lower W to match the aggressive expiration of
TS.

Table 2. Ordering wait time in INSO and TS
Avg cycles Max cycles
INSO TS INSO TS

FFT 42.10 41.31 2893 279
LU-NC 22.73 47.59 389 242
WATER-NSQ 46.82 42.51 721 258
LM-WR 11.62 41.83 372 206
LM-RDWR 10.95 41.95 375 184
LM-CP 17.39 41.45 413 185
























































 

 

Figure 12. Runtime of TS and INSO normalized
against TS
Figure 12 shows the benchmark runtimes (smaller is bet-

ter) for TS and INSO normalized to TS. The results show that
INSO outperforms TS on some occasions while TS is bet-
ter in some cases. Table 2 shows the average and maximum
ordering wait time for the benchmarks. Although the max-
imum ordering wait time in INSO is always higher, due to
the skew in SO assignment and higher W, the average order-
ing wait time in INSO is less than that in TS for LU-NC and
the LMBENCH benchmarks. This explains why INSO out-
performs TS for those benchmarks. For FFT and WATER-
NSQ, the average and maximum ordering wait time in INSO
is higher than that of TS; thus, TS performs better than INSO
for these benchmarks. The above experiment shows that the
different approaches to providing logical ordering in TS and
INSO lead to different behaviors across benchmarks. It should
be noted that the expirations in INSO go through a contention-
less single-cycle router. Realistic modeling of the expiration
network will adversely affect the ordering wait time in INSO.
We are currently working on modeling the detailed expiration
network.

6 Conclusion
In this paper, we presented INSO, an in-network snoop

ordering technique that re-engineers the interconnect fabric
(without touching the coherence substrate) to enable ordering
of snoop requests on underlying packetized on-chip networks
that do not provide any inherent ordering properties. Our log-
ical proposal can be overlaid on any unordered interconnect.
INSO tags globally-ordered ids, called snoop-orders, which
determine the global order of the requests. The network orders
the request based on snoop-orders and ensures the delivery of
requests to nodes in a globally-ordered fashion. Our evalua-
tions show that by saving directory indirection and ordering
requests at the source router, INSO improves performance by
up to 30% over a directory based protocol. By not having to in-
cur an expensive fallback mechanism, INSO also outperforms
TokenB in our experiments. In summary, INSO provides an
in-network ordering technique that enables snoopy coherence
protocols to scale on unordered interconnects.



Acknowledgments
The authors would like to thank David Wood for his in-

sightful comments and feedback on the work. The authors
would also like to thank Milo Martin for the original Times-
tamp Snooping code. This work was supported in part by NSF
(grant no. CNS-0613074), MARCO Gigascale Research Cen-
ter and SRC (contract no. 2008-HJ-1793).

References

[1] IBM Power6. http://www-128.ibm.com/
developerworks/power/library/pa-expert1.
html.

[2] Sun Niagara. http://www.sun.com/processors/
throughput/.

[3] S. V. Adve and K. Gharachorloo. Shared Memory Consistency
Models: A Tutorial. IEEE Computer, 29(12):66–76, Dec. 1996.

[4] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. GARNET: A
Detailed On-chip Network Model inside a Full-system Simula-
tor. In Proceedings of International Symposium on Performance
Analysis of Systems and Software, Apr. 2009.

[5] A. R. Alameldeen and D. A. Wood. IPC Considered Harmful
for Multiprocessor Workloads. IEEE Micro, 26(4):8–17, 2006.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural Implica-
tions. In Proceedings of International Conference on Parallel
Architectures and Compilation Techniques, Oct. 2008.

[7] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin, M. D.
Hill, and D. A. Wood. Multicast Snooping: A New Coherence
Method Using a Multicast Address Network. In Proceedings of
International Symposium on Computer Architecture, May 1999.

[8] R. Bisisani, A. Nowatzyk, and M. Ravishankar. Coherent
Shared Memory on a Message Passing Machine. In Proceed-
ings of International Conference on Parallel Processing, Aug.
1989.

[9] A. Charlesworth. Starfire: Extending the SMP Envelope. IEEE
Micro, 18(1):39–49, 1998.

[10] A. Charlesworth. The Sun Fireplane System Interconnect.
In Proceedings of ACM/IEEE Conference on Supercomputing,
Nov. 2001.

[11] W. Dally and B. Towles. Principles and Practices of Intercon-
nection Networks. Morgan Kaufmann Pub., 2003.

[12] W. J. Dally. Virtual Channel Flow Control. IEEE Transactions
on Parallel and Distributed Systems, 3(2):194–205, Mar. 1992.

[13] W. J. Dally and B. Towles. Route Packets, not Wires: On-chip
Interconnection Networks. In Proceedings of Design Automa-
tion Conference, Jun. 2001.

[14] N. Eisley, L.-S. Peh, and L. Shang. In-Network Cache Coher-
ence. In Proceedings of International Symposium on Microar-
chitecture, Dec. 2006.

[15] N. Enright Jerger, L.-S. Peh, and M. Lipasti. Virtual Circuit Tree
Multicasting: A Case for On-chip Hardware Multicast Support.
In Proceedings of International Symposium on Computer Archi-
tecture, Jun. 2008.

[16] M. Galles and E. Williams. Performance Optimizations, Imple-
mentation, and Verification of the SGI Challenge Multiproces-
sor. In Proceedings of Annual Hawaii International Conference
on System Sciences, Jan. 1994.

[17] Intel. From a Few Cores to Many: A Tera-scale Comput-
ing Research Overview. http://download.intel.
com/research/platform/terascale/terascale_
overview_paper.pdf.

[18] D. Kanter. The Common System Interface: Intel’s Future In-
terconnect. http://www.realworldtech.com/page.
cfm?ArticleID=RWT082807020032, 2007.

[19] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Co-
herence: Decoupling Performance and Correctness. In Pro-
ceedings of International Symposium on Computer Architec-
ture, Jun. 2003.

[20] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen,
R. M. Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D. Hill,
and D. A. Wood. Timestamp Snooping: An Approach for Ex-
tending SMPs. In Proceedings of International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems, Nov. 2000.

[21] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s General Execution-driven Multiprocessor
Simulator (GEMS) Toolset. SIGARCH Computer Architecture
News, 33(4):92–99, 2005.

[22] M. R. Marty and M. D. Hill. Coherence Ordering for Ring-
based Chip Multiprocessors. In Proceedings of International
Symposium on Microarchitecture, Dec. 2006.

[23] C. May, E. Silha, R. Simpson, H. Warren, and CORPORATE
International Business Machines, Inc., editors. The PowerPC
Architecture: A Specification for a New Family of RISC Proces-
sors. Morgan Kaufmann Publishers Inc., 1994.

[24] P. F. Reynolds, Jr., C. Williams, and R. R. Wagner, Jr. Isotach
Networks. IEEE Transactions on Parallel and Distributed Sys-
tems, 8(4):337–348, Apr. 1997.

[25] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
N. Ranganathan, D. Burger, S. W. Keckler, R. G. McDonald,
and C. R. Moore. TRIPS: A Polymorphous Architecture for Ex-
ploiting ILP, TLP, and DLP. ACM Transactions on Architecture
and Code Optimization, 1(1):62–93, Apr. 2004.

[26] D. J. Schanin. The Design and Development of a Very High
Speed System Bus – The Encore Multimax Nanobus. In Pro-
ceedings of ACM Fall Joint Computer Conference, Nov. 1986.

[27] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and J. Joyner.
Power5 System Microarchitecture. IBM Journal of Research
and Development, 49(4), Jul. 2005.

[28] D. J. Sorin, M. Plakal, A. E. Condon, M. D. Hill, M. M. K. Mar-
tin, and D. A. Wood. Specifying and Verifying a Broadcast and
a Multicast Snooping Cache Coherence Protocol. IEEE Trans-
actions on Parallel and Distributed Systems, 13, Jun. 2002.

[29] C. Staelin and H. P. Laboratories. lmbench: Portable Tools for
Performance Analysis. In Proceedings of USENIX Annual Tech-
nical Conference, Jan. 1996.

[30] K. Strauss, X. Shen, and J. Torellas. Uncorq: Unconstrained
Snoop Request Delivery in Embedded-Ring Multiprocessors. In
Proceedings of International Symposium on Microarchitecture,
Dec. 2007.

[31] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman,
Y. Hoskote, and N. Borkar. An 80-Tile 1.28 TFLOPS Network-
on-Chip in 65nm CMOS. In Proceedings of IEEE International
Solid State Circuit Conference, Feb. 2007.

[32] Virtutech AB. Simics Full System Simulator. http://www.
virtutech.com/.

[33] D. Wentzlaff, P. Griffin, H. Hoffman, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C.-C. Miao, J. Brown III, and A. Agar-
wal. On-Chip Interconnection Architecture of the Tile Proces-
sor. IEEE Micro, pages 15–31, 2007.

[34] C. Williams, P. Reynolds, Jr., and B. de Supinski. Delta Coher-
ence Protocols. IEEE Concurrency, 8(3):23–29, Jul.-Sep. 2000.

[35] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of International Symposium on
Computer Architecture, Jun. 1995.


